Postgresql中full join

时间: 2023-09-21 07:12:11 浏览: 94
PostgreSQL中的FULL JOIN是一种联接操作,用于将两个表中的所有行组合在一起,无论是否有匹配的行。它返回两个表中的所有行,并将不匹配的行填充为NULL。 FULL JOIN使用以下语法进行调用: ```sql SELECT * FROM table1 FULL JOIN table2 ON condition; ``` 其中,`table1`和`table2`是要联接的两个表,`condition`是指定联接条件的表达式。 FULL JOIN返回一个结果集,包含了两个表中的所有行。如果两个表中有匹配的行,则返回该匹配的行;如果只有一个表中有匹配的行,则返回该表中的行,并将另一个表中的列填充为NULL;如果两个表中都没有匹配的行,则返回两个表中的所有行,并将另一个表中的列填充为NULL。 需要注意的是,FULL JOIN在性能上可能较慢,因为它需要比较两个表中的所有行。在使用FULL JOIN时,确保联接条件尽可能准确,以避免返回不必要的结果。 希望能够帮助到你!如果你还有其他问题,请随时提问。
相关问题

postgresql 多表join

在 PostgreSQL 中,可以使用关键字 `JOIN` 在多个表之间进行连接。下面是一些常见的多表 JOIN 语句: 1. 内连接(INNER JOIN):只返回两个表之间有匹配关系的记录。 ```sql SELECT * FROM table1 INNER JOIN table2 ON table1.column = table2.column; ``` 2. 左连接(LEFT JOIN):返回左表中所有的记录以及右表中与左表匹配的记录。如果右表中没有匹配的记录,则返回 NULL。 ```sql SELECT * FROM table1 LEFT JOIN table2 ON table1.column = table2.column; ``` 3. 右连接(RIGHT JOIN):与左连接相反,返回右表中所有的记录以及左表中与右表匹配的记录。如果左表中没有匹配的记录,则返回 NULL。 ```sql SELECT * FROM table1 RIGHT JOIN table2 ON table1.column = table2.column; ``` 4. 全外连接(FULL OUTER JOIN):返回左右两个表中所有的记录,如果没有匹配的记录,则返回 NULL。 ```sql SELECT * FROM table1 FULL OUTER JOIN table2 ON table1.column = table2.column; ``` 注意,以上语法中的 `table1` 和 `table2` 分别代表需要连接的两个表,`column` 则代表需要连接的列名。在实际使用时,需要根据具体的数据表结构来进行相应的调整。

postgresql join

PostgreSQL中的join是将两个或多个表中的行连接起来形成一个结果集。Join语句的基本语法如下: ``` SELECT 列名1,列名2, ... FROM 表1 JOIN 表2 ON 表1.列名 = 表2.列名; ``` 其中,JOIN关键字用来连接表,ON关键字用来指定连接条件。常见的join类型包括:inner join(内连接)、left join(左连接)、right join(右连接)和full outer join(全外连接)。具体使用方法和示例可以参考PostgreSQL官方文档。

相关推荐

JDBC Connection [org.postgresql.jdbc.PgConnection@49f1bf43] will not be managed by Spring ==> Preparing: select z.*,y.PDTCLASS_CLASS FROM ( SELECT * FROM (SELECT r.PDT_PLANEX_PDTID,r.PDT_PLANEX_TYPE ,r.SUM_NUM,e.SUM_NUM2,e.COUNT_NUM FROM (SELECT SUM(t.PDT_PLANEX_NUM) as SUM_NUM,t.PDT_PLANEX_PDTID,t.PDT_PLANEX_TYPE FROM c_pdt_plan_ex t WHERE t.PDT_PLANEX_DELETED = 0 and t.DATA_FROM = ? and to_timestamp(?, 'yyyy-MM-dd HH:mm:ss.SSS') >= t.PDT_PLANEX_BEGIN and t.PDT_PLANEX_END >= to_timestamp(?, 'yyyy-MM-dd HH:mm:ss.SSS') GROUP BY t.PDT_PLANEX_PDTID,t.PDT_PLANEX_TYPE )r LEFT JOIN (SELECT SUM(o.WEISHT_NET_WGHT) SUM_NUM2,COUNT(1) COUNT_NUM,o.PDTINF_PDT,o.PDTINF_CLASS,o.PDT_PLANEX_PDTID,o.PDT_PLANEX_TYPE FROM(SELECT * FROM(SELECT * FROM (SELECT q.*, p.* FROM ( SELECT t.PDT_PLANEX_ID, t.PDT_PLANEX_NUM, t.PDT_PLANEX_PDTID, t.PDT_PLANEX_TYPE, t.PDT_PLANEX_BEGIN, t.PDT_PLANEX_END, t.PDT_PLANEX_COID FROM c_pdt_plan_ex t WHERE t.PDT_PLANEX_DELETED = 0 and t.DATA_FROM = ? and to_timestamp(?, 'yyyy-MM-dd HH:mm:ss.SSS') >= t.PDT_PLANEX_BEGIN and t.PDT_PLANEX_END >= to_timestamp(?, 'yyyy-MM-dd HH:mm:ss.SSS') GROUP BY t.PDT_PLANEX_PDTID, t.PDT_PLANEX_COID, t.PDT_PLANEX_TYPE, t.PDT_PLANEX_BEGIN, t.PDT_PLANEX_END, t.PDT_PLANEX_COID ) q LEFT JOIN (SELECT PDTINF_PDT, PDTINF_ID , PDTINF_CLASS FROM c_products_info WHERE PDTINF_DELETED=0 and DATA_FROM = ? )p on q.PDT_PLANEX_PDTID=p.PDTINF_ID)k LEFT JOIN (select g.CPY_CO,g.CPY_ID from c_companys g where CPY_DELETED=0 and DATA_FROM = ? ) c ON k.PDT_PLANEX_COID=c.CPY_ID)k inner JOIN (select j.WEISHT_NET_WGHT,j.WEISHT_PRODUCT,j.WEISHT_CO,j.WEISHT_EMPTY_TM,j.WEISHT_FULL_TM from c_weight_sheets j where WEISHT_DELETED = 0 and DATA_FROM = ? )r ON k.PDTINF_PDT=r.WEISHT_PRODUCT and k.CPY_CO=r.WEISHT_CO AND k.PDT_PLANEX_BEGIN <= r.WEISHT_FULL_TM AND k.PDT_PLANEX_END >= r.WEISHT_FULL_TM ORDER BY k.PDTINF_PDT )o GROUP BY o.PDT_PLANEX_PDTID)e ON e.PDT_PLANEX_PDTID=r.PDT_PLANEX_PDTID AND e.PDT_PLANEX_TYPE=r.PDT_PLANEX_TYPE)w left join (SELECT PDTINF_PDT, PDTINF_ID , PDTINF_CLASS FROM c_products_info WHERE PDTINF_DELETED=0 and DATA_FROM = ? )p on w.PDT_PLANEX_PDTID=p.PDTINF_ID) z left join (select PDTCLASS_CLASS,PDTCLASS_ID from c_pdt_class where PDTCLASS_DELETED=0) y on z.PDTINF_CLASS=y.PDTCLASS_ID ==> Parameters: e9f6ed8e091611ec842700163e092c06(String), 2023-10-08 23:59:59(String), 2020-10-08 23:59:59(String), e9f6ed8e091611ec842700163e092c06(String), 2023-10-08 23:59:59(String), 2020-10-08 23:59:59(String), e9f6ed8e091611ec842700163e092c06(String), e9f6ed8e091611ec842700163e092c06(String), e9f6ed8e091611ec842700163e092c06(String), e9f6ed8e091611ec842700163e092c06(String) Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@57f98196] [2023-06-01 21:16:02] [ERROR] -- Servlet.service() for servlet [dispatcherServlet] in context with path [/szIntranetweb] threw exception [Request processing failed; nested exception is org.springframework.jdbc.BadSqlGrammarException: ### Error querying database. Cause: org.postgresql.util.PSQLException: 错误: 字段 "t.pdt_planex_id" 必须出现在 GROUP BY 子句中或者在聚合函数中使用

OceanBase 数据库在优化器方面与 MySQL 数据库的区别,主要表现在以下几个方面: 1. 查看执行计划的命令 1)输出的列信息仅包含 ID、OPERATOR、NAME、EST. ROWS 和 COST 以及算子的详细信息。 2)不支持使用 SHOW WARNINGS 显示额外的信息。 2. 查看统计信息 1)支持执行 ANALYZE TABLE 语句查询数据字典表存储有关列值的直方图统计信息。 2)支持通过内部表 __all_meta_table 查看表统计信息和列统计信息。 3. 查询改写优化 1)支持外联接优化 2)支持外联接简化 3)支持块嵌套循环和批量 Key 访问联接 4)支持条件过滤 5)支持常量叠算优化 6)支持 IS NULL 优化 (索引不存储 NULL 值) 7)支持 ORDER BY 优化 8)支持 GROUP BY 优化 9)支持 DISTINCT 消除 10)支持 LIMIT 下压 11)支持 Window 函数优化 12)支持避免全表扫描 13)支持谓词下压 4. Optimizer Hint 机制 1)支持联接顺序 Optimizer Hints 2)支持表级别的 Optimizer Hints 3)支持索引级别的 Optimizer Hints 4)语法支持 INDEX Hint、FULL Hint、ORDERED Hint 和 LEADING Hint 等,不支持 USE INDEX 和 FORCE INDEX。 5. 兼容 MySQL 数据库的并行执行能力包括并行查询、并行复制和并行写入等,且 OceanBase 数据库已经支持并行算子,包括并行聚集、并行联接、并行分组以及并行排序等。 6. OceanBase 数据库还支持计划缓存和预编译,MySQL 数据库并不支持。 以上是OceanBase与mysql的优化器区别,仿造该格式列出postgresql与mysql的优化器区别

最新推荐

recommend-type

synchronized-4月5日.md

synchronized-4月5日.md
recommend-type

场景化落地应用推进制造企业数字化转型两套文档.pptx

场景化落地应用推进制造企业数字化转型两套文档.pptx
recommend-type

1111111111111111111111111111111

1111111111111111111111111111111
recommend-type

大型企业数字化转型管控平台解决方案两套材料.pptx

大型企业数字化转型管控平台解决方案两套材料.pptx
recommend-type

maven下载、安装、配置与使用教程&相关项目

【maven】下载、安装、配置与使用教程&相关项目
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。