强化学习matlab pg算法平衡车
时间: 2023-11-30 14:41:55 浏览: 133
强化学习算法
根据提供的引用内容,我们可以了解到强化学习智能体训练需要使用算法和情节管理器来保存候选智能体,并且可以通过并行计算和GPU加速来加快训练速度。同时,如果您具有Parallel Computing Toolbox™软件或MATLAB Parallel Server™软件,则可以在多核计算机、计算机群集或云资源上运行并行仿真。
针对您的问题,如果您想使用MATLAB实现强化学习平衡车,可以使用Policy Gradient (PG)算法。PG算法是一种基于梯度的强化学习算法,它通过优化策略来最大化累积奖励。在平衡车问题中,智能体需要学习如何控制平衡车以保持平衡。
以下是一个使用PG算法训练平衡车的MATLAB示例代码:
```matlab
% 设置环境
env = rlPredefinedEnv("RLCopter");
% 创建神经网络
statePath = [
imageInputLayer([4 1 1],'Normalization','none','Name','observation')
fullyConnectedLayer(16,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(16,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(2,'Name','output')];
actionPath = [
imageInputLayer([2 1 1],'Normalization','none','Name','action')
fullyConnectedLayer(16,'Name','fc3')];
criticNetwork = [
statePath
additionLayer(2,'Name','add')
actionPath
fullyConnectedLayer(1,'Name','CriticOutput')];
actorNetwork = [
statePath
additionLayer(2,'Name','add')
actionPath
tanhLayer('Name','ActorOutput')];
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,env.getObservationInfo, ...
'Observation',{'observation'},'Action',{'action'},criticOpts);
actorOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,env.getActionInfo, ...
'Observation',{'observation'},'Action',{'ActorOutput'},actorOpts);
% 创建代理
agentOpts = rlPGAgentOptions(...
'DiscountFactor',0.99, ...
'ExperienceHorizon',256, ...
'EntropyLossWeight',0.02, ...
'UseBaseline',true, ...
'BaselineMode',"moving-average", ...
'BaselineHorizon',1e4, ...
'NumStepsToLookAhead',128, ...
'AdvantageEpsilon',1e-5, ...
'MiniBatchSize',64);
agent = rlPGAgent(actor,critic,agentOpts);
% 训练代理
trainOpts = rlTrainingOptions(...
'MaxEpisodes',10000, ...
'MaxStepsPerEpisode',500, ...
'Verbose',false, ...
'Plots','training-progress', ...
'StopTrainingCriteria','AverageReward', ...
'StopTrainingValue',1000, ...
'ScoreAveragingWindowLength',50);
trainingStats = train(agent,env,trainOpts);
```
在这个示例中,我们首先设置了环境,然后创建了一个神经网络,包括一个状态路径和一个动作路径。接下来,我们创建了一个评论家和一个演员,并将它们传递给一个PG代理。最后,我们使用训练选项来训练代理。
阅读全文