针对scikit-learn中的糖尿病数据集,利用Python实现基于统计机器学习的数据回归分析,并对数据以及结果进行分析及可视化;
时间: 2024-11-23 14:31:41 浏览: 118
在Python中使用scikit-learn库进行糖尿病数据集(Pima Indians Diabetes Dataset)的回归分析,通常可以按照以下步骤进行:
1. **导入所需库**:
```python
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import seaborn as sns
import matplotlib.pyplot as plt
```
2. **加载数据集**:
```python
diabetes = datasets.load_diabetes()
df = pd.DataFrame(data=diabetes.data, columns=diabetes.feature_names)
df['target'] = diabetes.target
```
3. **数据预处理**(如:缺失值处理、标准化等):
```python
# 数据清洗与预处理
df.dropna(inplace=True) # 删除含有缺失值的行
X = df.iloc[:, :-1] # 特征
y = df.iloc[:, -1] # 目标变量
```
4. **划分训练集和测试集**:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. **模型训练**:
```python
model = LinearRegression() # 使用线性回归作为示例
model.fit(X_train, y_train)
```
6. **预测并评估**:
```python
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("MSE:", mse)
print("R^2 Score:", r2)
```
7. **结果分析与可视化**:
```python
# 绘制残差图检查模型拟合情况
residuals = y_test - y_pred
sns.residplot(y_test, y_pred, lowess=True)
plt.xlabel('True Values')
plt.ylabel('Residuals')
plt.show()
# 可视化特征重要性(如果有分类器)
if hasattr(model, 'coef_'):
coefs = pd.DataFrame({'Features': X.columns, 'Importance': model.coef_})
coefs.plot(kind='bar', x='Features', y='Importance')
```
阅读全文