res := common.DB.Create(reqType) reqType是一个接口,底层是结构体 怎么取出结构体id值

时间: 2024-02-02 20:03:13 浏览: 32
在 Golang 中,可以使用类型断言来将接口类型转换为具体的结构体类型,然后获取结构体的 ID 值。具体可以参考下面的示例代码: ``` // 假设 reqType 是一个指向结构体的接口类型,底层是结构体 PsPipe // 将接口类型转换为具体的结构体类型 pipe, ok := reqType.(*models.PsPipe) if !ok { // 类型断言失败,处理错误逻辑 } // 获取结构体的 ID 值 id := pipe.ID ``` 在上面的示例代码中,首先使用类型断言将接口类型转换为具体的结构体类型,然后通过访问结构体的 ID 字段来获取其 ID 值。如果类型断言失败,则表示接口类型不是 PsPipe 类型,可以在此处处理错误逻辑。
相关问题

简化这段代码switch item.Type { //雨水口 case "cumb": req := models.PsComb{} if err := mapstructure.Decode(item.Value, &req); err != nil { panic(err) } res := common.DB.Create(&req) if res.Error != nil { resp.Code = 500 resp.Msg = "创建失败" resp.Data = res.Error ctx.JSON(500, resp) return } //生成CombID common.DB.Model(&req).Update("CombID", "P"+"01"+req.Code+strconv.Itoa(int(req.ID))) resp.Data = req.CombID ctx.JSON(200, resp) // case "conduit": req := models.PsConduit{} if err := mapstructure.Decode(item.Value, &req); err != nil { panic(err) } res := common.DB.Create(&req) if res.Error != nil { resp.Code = 500 resp.Msg = "创建失败" resp.Data = res.Error ctx.JSON(500, resp) return } //生成ConduitID common.DB.Model(&req).Update("ConduitID", "L"+"02"+req.Code+strconv.Itoa(int(req.ID))) resp.Data = req.ConduitID ctx.JSON(200, resp) case "feature": req := models.Feature{} if err := mapstructure.Decode(item.Value, &req); err != nil { panic(err) } res := common.DB.Create(&req) if res.Error != nil { resp.Code = 500 resp.Msg = "创建失败" resp.Data = res.Error ctx.JSON(500, resp) return } //生成FeatureID common.DB.Model(&req).Update("FeatureID", "P"+"10"+req.Code+strconv.Itoa(int(req.ID))) resp.Data = req.FeatureID ctx.JSON(200, resp) }

可以使用 map 来简化这段代码,将每个 case 表达式与一个对应的结构体以及生成 ID 的前缀进行映射,然后根据输入的 item.Type 从 map 中获取对应的结构体和前缀,再执行相应的操作。以下是代码示例: ```go package main import ( "strconv" "github.com/gin-gonic/gin" "github.com/mitchellh/mapstructure" ) type Request interface{} type Response struct { Code int `json:"code"` Msg string `json:"msg"` Data interface{} `json:"data"` } type ItemType struct { Type string `json:"type"` Value Request `json:"value"` } type PrefixID struct { Prefix string ID string } var prefixMap = map[string]PrefixID{ "cumb": PrefixID{"P01", "CombID"}, "conduit": PrefixID{"L02", "ConduitID"}, "feature": PrefixID{"P10", "FeatureID"}, } var modelMap = map[string]interface{}{ "cumb": &models.PsComb{}, "conduit": &models.PsConduit{}, "feature": &models.Feature{}, } func createItem(ctx *gin.Context) { var item ItemType var resp Response if err := ctx.ShouldBindJSON(&item); err != nil { resp.Code = 400 resp.Msg = "参数错误" ctx.JSON(400, resp) return } if reqType, ok := modelMap[item.Type]; ok { if err := mapstructure.Decode(item.Value, reqType); err != nil { panic(err) } res := common.DB.Create(reqType) if res.Error != nil { resp.Code = 500 resp.Msg = "创建失败" resp.Data = res.Error ctx.JSON(500, resp) return } prefixID := prefixMap[item.Type] common.DB.Model(reqType).Update(prefixID.ID, prefixID.Prefix+strconv.Itoa(int(reqType.ID))) resp.Data = prefixID.Prefix + strconv.Itoa(int(reqType.ID)) ctx.JSON(200, resp) } else { resp.Code = 400 resp.Msg = "参数错误" ctx.JSON(400, resp) } } ``` 在上面的代码中,我们使用了 prefixMap 和 modelMap 来分别将每个 case 表达式与一个对应的前缀以及结构体进行了映射。在 createItem 函数中,我们根据输入的 item.Type 从 modelMap 中获取对应的结构体,然后使用 mapstructure.Decode 函数将 item.Value 解码成对应的结构体。接着,我们使用 common.DB.Create 函数将结构体写入数据库,生成对应的 ID,并使用 common.DB.Model 函数更新 ID 字段。最后,我们根据输入的 item.Type 从 prefixMap 中获取对应的前缀,将前缀和 ID 拼接起来作为返回值。

优化代码 var modelMap = map[string]interface{}{ "comb": &models.PsComb{}, "conduit": &models.PsConduit{}, "feature": &models.Feature{}, "discharger": &models.PsDischarger{}, "gate": &models.PsGate{}, "interception": &models.PsInterception{}, "lake": &models.PsLake{}, "manhole": &models.PsManhole{}, "outfall": &models.PsOutfall{}, "pipe": &models.PsPipe{}, "pumpStation": &models.PsPumpStation{}, "retention": &models.PsRetention{}, "river": &models.PsRiver{}, "wwtp": &models.PsWWTP{}, "psSystem": &models.PsSystem{}, "landUse": &models.LandUse{}, "publicity": &models.Publicity{}, } func Batch(ctx *gin.Context) { var requ Request if err := ctx.ShouldBind(&requ); err != nil { ctx.JSON(400, models.Response{ Code: 400, Msg: "参数有误", Data: err.Error(), }) return } resp := models.Response{ Code: 0, Msg: "success", } for _, item := range requ.Post { if reqType, ok := modelMap[item.Type]; ok { if err := mapstructure.Decode(item.Value, reqType); err != nil { panic(err) } res := common.DB.Create(reqType) if res.Error != nil { resp.Code = 500 resp.Msg = "创建失败" resp.Data = res.Error ctx.JSON(500, resp) return } ctx.JSON(200, resp)

这段代码看起来比较简单,但可以从以下几个方面进行优化: 1. 将 `modelMap` 改为在 `init()` 函数中初始化,而不是在每次调用 `Batch()` 函数时初始化。这样可以避免重复初始化,提高代码的性能。 2. 针对循环中的每个 `item`,可以采用批量插入(bulk insert)的方式,而不是逐个插入。这样可以减少数据库交互的次数,提高代码的性能。例如,可以将所有待插入的数据构造成一个切片,然后通过 `common.DB.CreateInBatches()` 方法进行批量插入。 3. 当出现错误时,应该立即返回错误信息,而不是继续进行循环。这样可以避免不必要的数据库交互和数据错误。 下面是一个优化后的示例代码: ``` var modelMap = map[string]interface{}{ "comb": &models.PsComb{}, "conduit": &models.PsConduit{}, "feature": &models.Feature{}, "discharger": &models.PsDischarger{}, "gate": &models.PsGate{}, "interception": &models.PsInterception{}, "lake": &models.PsLake{}, "manhole": &models.PsManhole{}, "outfall": &models.PsOutfall{}, "pipe": &models.PsPipe{}, "pumpStation": &models.PsPumpStation{}, "retention": &models.PsRetention{}, "river": &models.PsRiver{}, "wwtp": &models.PsWWTP{}, "psSystem": &models.PsSystem{}, "landUse": &models.LandUse{}, "publicity": &models.Publicity{}, } func init() { for _, model := range modelMap { common.DB.AutoMigrate(model) } } func Batch(ctx *gin.Context) { var requ Request if err := ctx.ShouldBind(&requ); err != nil { ctx.JSON(400, models.Response{ Code: 400, Msg: "参数有误", Data: err.Error(), }) return } resp := models.Response{ Code: 0, Msg: "success", } var values []interface{} for _, item := range requ.Post { if reqType, ok := modelMap[item.Type]; ok { if err := mapstructure.Decode(item.Value, reqType); err != nil { ctx.JSON(500, models.Response{ Code: 500, Msg: "创建失败", Data: err.Error(), }) return } values = append(values, reqType) } } if len(values) > 0 { res := common.DB.CreateInBatches(values, len(values)) if res.Error != nil { ctx.JSON(500, models.Response{ Code: 500, Msg: "创建失败", Data: res.Error, }) return } } ctx.JSON(200, resp) } ``` 注意,这只是一种示例代码,具体实现可能需要根据您的实际情况进行调整。

相关推荐

最新推荐

recommend-type

“推荐系统”相关资源推荐

推荐了国内外对推荐系统的讲解相关资源
recommend-type

全渠道电商平台业务中台解决方案.pptx

全渠道电商平台业务中台解决方案.pptx
recommend-type

云计算企业私有云平台建设方案.pptx

云计算企业私有云平台建设方案.pptx
recommend-type

通过CNN卷积神经网络对盆栽识别-含图片数据集.zip

本代码是基于python pytorch环境安装的。 下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。 或可直接参考下面博文进行环境安装。 https://blog.csdn.net/no_work/article/details/139246467 如果实在不会安装的,可以直接下载免安装环境包,有偿的哦 https://download.csdn.net/download/qq_34904125/89365780 安装好环境之后, 代码需要依次运行 01数据集文本生成制作.py 02深度学习模型训练.py 和03pyqt_ui界面.py 数据集文件夹存放了本次识别的各个类别图片。 本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集, 运行01数据集文本制作.py文件,会就读取数据集下每个类别文件中的图片路径和对应的标签 运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地
recommend-type

电容式触摸按键设计参考

"电容式触摸按键设计参考 - 触摸感应按键设计指南" 本文档是Infineon Technologies的Application Note AN64846,主要针对电容式触摸感应(CAPSENSE™)技术,旨在为初次接触CAPSENSE™解决方案的硬件设计师提供指导。文档覆盖了从基础技术理解到实际设计考虑的多个方面,包括电路图设计、布局以及电磁干扰(EMI)的管理。此外,它还帮助用户选择适合自己应用的合适设备,并提供了CAPSENSE™设计的相关资源。 文档的目标受众是使用或对使用CAPSENSE™设备感兴趣的用户。CAPSENSE™技术是一种基于电容原理的触控技术,通过检测人体与传感器间的电容变化来识别触摸事件,常用于无物理按键的现代电子设备中,如智能手机、家电和工业控制面板。 在文档中,读者将了解到CAPSENSE™技术的基本工作原理,以及在设计过程中需要注意的关键因素。例如,设计时要考虑传感器的灵敏度、噪声抑制、抗干扰能力,以及如何优化电路布局以减少EMI的影响。同时,文档还涵盖了器件选择的指导,帮助用户根据应用需求挑选合适的CAPSENSE™芯片。 此外,为了辅助设计,Infineon提供了专门针对CAPSENSE™设备家族的设计指南,这些指南通常包含更详细的技术规格、设计实例和实用工具。对于寻求代码示例的开发者,可以通过Infineon的在线代码示例网页获取不断更新的PSoC™代码库,也可以通过视频培训库深入学习。 文档的目录通常会包含各个主题的章节,如理论介绍、设计流程、器件选型、硬件实施、软件配置以及故障排查等,这些章节将逐步引导读者完成一个完整的CAPSENSE™触摸按键设计项目。 通过这份指南,工程师不仅可以掌握CAPSENSE™技术的基础,还能获得实践经验,从而有效地开发出稳定、可靠的触摸感应按键系统。对于那些希望提升产品用户体验,采用先进触控技术的设计师来说,这是一份非常有价值的参考资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题

![MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题](https://ucc.alicdn.com/pic/developer-ecology/ovk2h427k2sfg_f0d4104ac212436a93f2cc1524c4512e.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MATLAB函数调用的基本原理** MATLAB函数调用是通过`function`关键字定义的,其语法为: ```matlab function [output1, output2, ..., outputN] = function_na
recommend-type

LDMIA r0!,{r4 - r11}

LDMIA是ARM汇编语言中的一条指令,用于从内存中加载多个寄存器的值。具体来说,LDMIA r0!,{r4 r11}的意思是从内存地址r0开始,连续加载r4到r11这8个寄存器的值[^1]。 下面是一个示例代码,演示了如何使用LDMIA指令加载寄器的值: ```assembly LDMIA r0!, {r4-r11} ;从内存地址r0开始,连续加载r4到r11这8个寄存器的值 ``` 在这个示例中,LDMIA指令将会从内存地址r0开始,依次将内存中的值加载到r4、r5、r6、r7、r8、r9、r10和r11这8个寄存器中。
recommend-type

西门子MES-系统规划建议书(共83页).docx

"西门子MES系统规划建议书是一份详细的文档,涵盖了西门子在MES(制造执行系统)领域的专业见解和规划建议。文档由西门子工业自动化业务部旗下的SISW(西门子工业软件)提供,该部门是全球PLM(产品生命周期管理)软件和SIMATIC IT软件的主要供应商。文档可能包含了 MES系统如何连接企业级管理系统与生产过程,以及如何优化生产过程中的各项活动。此外,文档还提及了西门子工业业务领域的概况,强调其在环保技术和工业解决方案方面的领导地位。" 西门子MES系统是工业自动化的重要组成部分,它扮演着生产过程管理和优化的角色。通过集成的解决方案,MES能够提供实时的生产信息,确保制造流程的高效性和透明度。MES系统规划建议书可能会涉及以下几个关键知识点: 1. **MES系统概述**:MES系统连接ERP(企业资源计划)和底层控制系统,提供生产订单管理、设备监控、质量控制、物料跟踪等功能,以确保制造过程的精益化。 2. **西门子SIMATIC IT**:作为西门子的MES平台,SIMATIC IT提供了广泛的模块化功能,适应不同行业的生产需求,支持离散制造业、流程工业以及混合型生产环境。 3. **产品生命周期管理(PLM)**:PLM软件用于管理产品的全生命周期,从概念设计到报废,强调协作和创新。SISW提供的PLM解决方案可能包括CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)等工具。 4. **工业自动化**:西门子工业自动化业务部提供自动化系统、控制器和软件,提升制造业的效率和灵活性,包括生产线自动化、过程自动化和系统整体解决方案。 5. **全球市场表现**:SISW在全球范围内拥有大量客户,包括许多世界500强企业,表明其解决方案在业界的广泛应用和认可。 6. **中国及亚洲市场**:SISW在中国和亚洲其他新兴市场具有领先地位,特别是在CAD领域,反映了其在这些地区的重要影响力。 7. **案例研究**:文档可能包含实际案例,如通用汽车的全球产品开发项目,展示SISW技术在大型复杂项目中的应用能力。 这份建议书不仅对理解西门子MES系统有重要作用,也为企业在选择和实施MES系统时提供了策略性指导,有助于企业规划和优化其生产流程,实现更高效的制造业运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依