这段代码有没有问题 int bsp_platform::qspi_nor_write_status(u32 status,u8 cfg) { int ret = 0; SPI_TRANS_NUM_U trans_num; NOR_LOG("update protect area by status: 0x%x\n", status); bsp_platform::wait_for_idle_qspi(); //qspi_trans_ctrl_write_no_data(); qspi_write_enable(); bsp_platform::wait_for_idle_qspi(); qspi_trans_ctrl_update_sts(); trans_num.data = 0; trans_num.bits.wr_trans_num = 0x1; trans_num.bits.rd_trans_num = 0xff; QSPI_CSR_AUTO_WR(SPI_TRANS_NUM, trans_num.data); bsp_platform::wait_for_idle_qspi(); QSPI_CSR_AUTO_WR(SPI_CMD, WR_ST_REG); QSPI_CSR_AUTO_WR(SPI_DATA, status | cfg<<8); //QSPI_CSR_AUTO_WR(SPI_DATA, cfg); UDELAY(40*1000); bsp_platform::wait_for_idle_qspi(); /*wait for write-in-progress ready*/ ret = nor_qspi_erase_write_polling_compl(); if (ret == SPI_OPERATION_FAIL) { NOR_LOG("write nor status register fail\n"); } return ret; }

时间: 2024-04-26 18:23:07 浏览: 158
这段代码可能存在问题。具体来说: 1. 在写入状态寄存器之前,应该先发送写使能命令,以确保能够写入状态寄存器。但是,代码中的qspi_write_enable()函数的具体实现并没有提供,因此无法确认是否实现了该功能。 2. 在写入状态寄存器之前,应该先等待QSPI控制器处于空闲状态,以确保前面的操作已经完成。但是,代码中的bsp_platform::wait_for_idle_qspi()函数的具体实现也没有提供,因此无法确认是否实现了该功能。 3. 在写入状态寄存器时,将status和cfg拼接成一个16位的值写入SPI_DATA寄存器,这可能会导致数据写入错误。应该将它们分别写入SPI_DATA寄存器,以确保正确写入。 4. 在写入状态寄存器后,应该等待写入操作完成,以便进行后续操作。但是,代码中的UDELAY(40*1000)只是简单的等待一段时间,无法保证写入操作已经完成。 因此,需要仔细检查和测试该函数的实现,以确保其正确性。
相关问题

Ret_Qspi_Status |= Spi_SetupEB(SpiConf_SpiChannel_SPI4_PCS0, (uint8 *)&SA59401_Tx_Buf_u16[0],\ (uint8 *)&SA59401_Rx_Buf_u16[0], datalength*2); Ret_Qspi_Status |= Spi_SyncTransmit(SpiConf_SpiSequence_SPI4_PCS0_Master);

这段代码是使用SPI接口进行数据传输的。首先,`Spi_SetupEB`函数用于设置SPI通道、发送缓冲区和接收缓冲区,并返回传输状态。其中,`SpiConf_SpiChannel_SPI4_PCS0`表示使用SPI4通道的PCS0片选信号,`(uint8 *)&SA59401_Tx_Buf_u16[0]`表示发送缓冲区的起始地址,`(uint8 *)&SA59401_Rx_Buf_u16[0]`表示接收缓冲区的起始地址,`datalength*2`表示数据长度乘以2(假设每个数据为16位)。 接下来,`Spi_SyncTransmit`函数用于同步传输SPI数据序列,并返回传输状态。其中,`SpiConf_SpiSequence_SPI4_PCS0_Master`表示使用SPI4通道的PCS0片选信号,并且是主设备模式。 最后,将两次传输状态进行逻辑或操作,并赋值给`Ret_Qspi_Status`变量。这样可以将两次传输的状态合并为一个状态值,方便后续判断传输是否成功。

#define SFUD_DEFAULT_SPI_CFG \ { \ .mode = SPI_MODE_0, \ .data_width = 8, \ .max_hz = SFUD_SPI_MAX_HZ, \ .qspi_max_hz = SFUD_QSPI_MAX_HZ, \ } 把数据位宽设置成16对spi有什么影响

将数据位宽设置成16会对SPI通信产生影响。在SPI通信时,数据传输是按照位(bit)进行的,因此数据位宽指的是每次传输的数据位数。将数据位宽设置成16,会增加每次传输的数据量,从而加快数据传输速度。但是,如果SPI从设备的数据位宽不支持16位,可能会导致通信失败或者数据误差。因此,在设置SPI通信参数时,需要根据实际情况选择合适的数据位宽。
阅读全文

相关推荐

最新推荐

recommend-type

stm32_QuadSPI_Flash.pdf

具体包括STM32F7 Series、STM32L4 Series以及STM32F412、STM32F413/423、STM32F446、STM32F469/479、STM32H743/753、STM32H750 Value line、STM32L4R5/S5、STM32L4R7/S7、STM32L4R9/S9等产品线。此外,STM32WB55系列...
recommend-type

Xilinx_ZYNQ7020_自定义IP开发文档.docx

这包括设置IO电压标准,如LVCOMS3.3V和LVCOMS1.8V,以及连接外部设备,如UART和QSPI Flash。 创建自定义IP时,开发者会选择使用AXI-Lite接口,这是一种轻量级的AXI4子集,专为低带宽控制信号传输设计。AXI-Lite接口...
recommend-type

425_基于Camera Link HD-SDI的双光融合处理平台V20200701(2).docx

双光融合视觉软件内容丰富,不仅有实际的代码实现,还有详尽的讲解,涵盖了图像传输的全过程。1) 双光视频PL端图像接入,使开发者理解行场分辨率和双目同步的概念;2) 单路HD-SDI视频转HD-SDI显示,展示了视频显示的...
recommend-type

zynq中设置QSPI dual stacked flash.docx

petalinux默认采用的是qspi singlle模式,对于两片采用dual stack连接的flash,需要配置dts和kernel才行。本文档描述了需要配置的关键点,实测OK
recommend-type

STM32H750XBH6核心板原理图(pdf)

STM32H750XBH6是一款高性能的微控制器,属于意法半导体(STMicroelectronics)的STM32H7系列。这款芯片基于ARM Cortex-M7内核,设计用于处理密集型计算任务,适用于工业控制、医疗设备、消费电子等应用。其核心板...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"