时间片轮转调度算法与银行家算法结合,设计一种时间片轮转调度算法从进程就绪队列中选择一个进程,该进程发出资源请求并启动银行家算法。,用Java写出来

时间: 2024-02-06 19:10:41 浏览: 77
以下是时间片轮转调度算法与银行家算法结合的Java代码实现: ```java import java.util.*; public class TimeSliceSchedulerBankerAlgorithm { // 进程类 static class Process { private String name; // 进程名 private int[] maxClaim; // 最大资源需求 private int[] allocation; // 已分配资源 private int[] need; // 尚需资源 private int priority; // 优先级 private int cpuBurst; // CPU执行时间 private int arrivalTime; // 到达时间 private int waitingTime; // 等待时间 private int turnaroundTime; // 周转时间 private int responseTime; // 响应时间 private int remainingTime; // 剩余执行时间 private boolean terminated; // 是否已完成 public Process(String name, int[] maxClaim, int priority, int cpuBurst, int arrivalTime) { this.name = name; this.maxClaim = maxClaim; this.allocation = new int[maxClaim.length]; Arrays.fill(allocation, 0); this.need = new int[maxClaim.length]; for (int i = 0; i < maxClaim.length; i++) { this.need[i] = maxClaim[i]; } this.priority = priority; this.cpuBurst = cpuBurst; this.arrivalTime = arrivalTime; this.waitingTime = 0; this.turnaroundTime = 0; this.responseTime = -1; this.remainingTime = cpuBurst; this.terminated = false; } public String getName() { return name; } public int[] getMaxClaim() { return maxClaim; } public int[] getAllocation() { return allocation; } public int[] getNeed() { return need; } public int getPriority() { return priority; } public int getCpuBurst() { return cpuBurst; } public int getArrivalTime() { return arrivalTime; } public int getWaitingTime() { return waitingTime; } public int getTurnaroundTime() { return turnaroundTime; } public int getResponseTime() { return responseTime; } public int getRemainingTime() { return remainingTime; } public boolean isTerminated() { return terminated; } // 分配资源 public boolean allocate(int[] request) { for (int i = 0; i < request.length; i++) { if (request[i] > need[i]) { return false; } if (request[i] > SystemResources.available[i]) { return false; } } for (int i = 0; i < request.length; i++) { allocation[i] += request[i]; need[i] -= request[i]; SystemResources.available[i] -= request[i]; } return true; } // 释放资源 public void release() { for (int i = 0; i < allocation.length; i++) { SystemResources.available[i] += allocation[i]; allocation[i] = 0; } terminated = true; } // 运行进程 public void run(int timeSlice) { responseTime = (responseTime == -1) ? SystemClock.getTime() - arrivalTime : responseTime; if (remainingTime <= timeSlice) { waitingTime += SystemClock.getTime() - turnaroundTime; remainingTime = 0; turnaroundTime = SystemClock.getTime(); release(); } else { waitingTime += SystemClock.getTime() - turnaroundTime; remainingTime -= timeSlice; turnaroundTime = SystemClock.getTime(); } } } // 系统资源类 static class SystemResources { private static int[] available; // 可用资源 public static void setAvailable(int[] available) { SystemResources.available = available; } } // 系统时钟类 static class SystemClock { private static int time = 0; public static int getTime() { return time; } public static void tick() { time++; } } // 银行家算法类 static class BankerAlgorithm { // 判断是否存在安全序列 public static boolean isSafe(List<Process> processes) { int n = processes.size(); boolean[] finished = new boolean[n]; int[] work = new int[SystemResources.available.length]; for (int i = 0; i < SystemResources.available.length; i++) { work[i] = SystemResources.available[i]; } int count = 0; int[] safeSequence = new int[n]; while (count < n) { boolean found = false; for (int i = 0; i < n; i++) { if (!finished[i]) { boolean enoughResources = true; for (int j = 0; j < SystemResources.available.length; j++) { if (processes.get(i).getNeed()[j] > work[j]) { enoughResources = false; break; } } if (enoughResources) { for (int j = 0; j < SystemResources.available.length; j++) { work[j] += processes.get(i).getAllocation()[j]; } finished[i] = true; safeSequence[count] = i; count++; found = true; } } } if (!found) { return false; } } return true; } // 分配资源 public static boolean allocate(List<Process> processes, Process process, int[] request) { if (!isSafe(processes)) { return false; } if (!process.allocate(request)) { return false; } if (!isSafe(processes)) { process.release(); return false; } return true; } } // 时间片轮转调度算法类 static class TimeSliceScheduler { private int timeSlice; // 时间片大小 private List<Process> processes; // 进程列表 private Queue<Process> readyQueue; // 就绪队列 private Process runningProcess; // 运行进程 public TimeSliceScheduler(int timeSlice, List<Process> processes) { this.timeSlice = timeSlice; this.processes = processes; this.readyQueue = new LinkedList<>(); this.runningProcess = null; } // 将进程加入就绪队列 public void addProcess(Process process) { readyQueue.offer(process); } // 选择就绪队列中的下一个进程运行 public void selectNextProcess() { if (runningProcess != null && !runningProcess.isTerminated()) { addProcess(runningProcess); } if (!readyQueue.isEmpty()) { runningProcess = readyQueue.poll(); } else { runningProcess = null; } } // 运行进程 public void run() { while (runningProcess != null) { SystemClock.tick(); runningProcess.run(timeSlice); selectNextProcess(); } } } public static void main(String[] args) { // 初始化系统资源 int[] available = {10, 5, 7}; SystemResources.setAvailable(available); // 初始化进程列表 List<Process> processes = new ArrayList<>(); Process p1 = new Process("P1", new int[]{6, 4, 7}, 1, 10, 0); Process p2 = new Process("P2", new int[]{3, 2, 2}, 2, 3, 2); Process p3 = new Process("P3", new int[]{4, 3, 5}, 3, 6, 3); Process p4 = new Process("P4", new int[]{2, 1, 3}, 4, 4, 4); processes.add(p1); processes.add(p2); processes.add(p3); processes.add(p4); // 初始化时间片轮转调度器 TimeSliceScheduler scheduler = new TimeSliceScheduler(2, processes); // 将进程加入就绪队列 for (Process process : processes) { scheduler.addProcess(process); } // 运行时间片轮转调度器 scheduler.run(); // 输出进程的等待时间、周转时间和响应时间 for (Process process : processes) { System.out.printf("%s: waitingTime=%d, turnaroundTime=%d, responseTime=%d\n", process.getName(), process.getWaitingTime(), process.getTurnaroundTime(), process.getResponseTime()); } // 测试银行家算法 int[] request = {2, 1, 1}; Process p5 = new Process("P5", new int[]{1, 2, 1}, 5, 2, 0); processes.add(p5); if (BankerAlgorithm.allocate(processes, p5, request)) { System.out.println("Allocation successful!"); } else { System.out.println("Allocation failed!"); } } } ``` 以上代码实现了一个包含时间片轮转调度算法和银行家算法的进程调度器,同时还包括了进程类、系统资源类和系统时钟类。在主函数中,先初始化系统资源和进程列表,然后将进程加入时间片轮转调度器的就绪队列中,最后运行时间片轮转调度器,并输出每个进程的等待时间、周转时间和响应时间。最后,测试了银行家算法的分配资源功能。
阅读全文

相关推荐

application/x-rar
设计一个按时间片轮转法实现进程调度的程序。 [提示]: (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进程控制块的格式为: 进程名 指针 要求运行时间 已运行时间 状态 其中, 进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。 要求运行时间——假设进程需要运行的单位时间数。 已运行时间——假设进程已经运行的单位时间数,初始值为“0”。 状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 每次运行所设计的进程调度程序前,为每个进程任意确定它的“要求运行时间”。 (3) 把五个进程按顺序排成循环队列,用指针指出队列连接情况。另用一标志单元记录轮到运行的进程。例如,当前轮到P2执行,则有: 标志单元中内容为K2 , K1 P1 K2 P2 K3 P3 K4 P4 K5 P5 K2 K3 K4 K5 K1 2 3 1 2 4 1 0 0 0 0 R R R R R PCB1 PCB2 PCB3 PCB4 PCB5 (4) 进程调度总是选择标志单元指示的进程运行。由于本实习是模拟进程调度的功能,所以,对被选中的进程并不实际的启动运行,而是执行: 已运行时间+1 来模拟进程的一次运行,表示进程已经运行过一个单位的时间。 请同学注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片。在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。 (5) 进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。同时,应判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间¹已运行时间,则表示它尚未执行结束,应待到下一轮时再运行。若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”(E)且退出队列。此时,应把该进程的进程控制块中的指针值送到前面一个进程的指针位置中。 (6) 若“就绪”状态的进程队列不为空,则重复上面的(4)和(5)的步骤,直到所有的进程都成为“结束”状态。 (7) 在所设计的程序中应有显示或打印语句,能显示或打印每次选中进程的进程名以及运行一次后进程队列的变化。 (8) 为五个进程任意确定一组“要求运行时间”,运行进程调度程序,显示或打印逐次被选中的进程名以及进程控制块的动态变化过程。 模拟多资源银行家算法 实习检查: (1)程序运行后,由检查教师输入系统初态(包括进程名和各进程已获得资源、尚需资源及当前系统可用资源情况。注意:进程数目和资源种类由检查教师动态确定); (2)由检查教师输入此时某一进程申请各资源情况,使用银行家算法,检测该请求是否安全。若安全,则显示分配后的资源分配矩阵、进程资源需求矩阵,当前可用资源情况,以及安全序列。若不安全,给出警告信息! 作业调度采用FCFS、SJF、响应比高者优先算法模拟设计作业调度程序。 [提示]: (1)每个作业的JCB中包括作业名、提交时刻、要求运行时间; (2)假设第一个作业提交时,系统中无正在执行的作业,即第一个作业一提交系统便调度该作业。 要求: 输入:一批作业中各作业的作业名、提交时刻、要求运行时间; 选择不同的作业调度程序运行; 输出:相应作业调度算法下,各作业的等待时间、周转时间、带权周转时间,这批作业的调度顺序、平均周转时间和平均带权周转时间。

大家在看

recommend-type

《数据库原理与应用》大作业.zip

数据库,酒店点菜管理系统
recommend-type

基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目

基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目 基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目 基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目 基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目 基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目基于时空图卷积(ST-GCN)的骨骼动作识别(python源码+项目说明)高分项目基于时空图卷积(ST
recommend-type

基于Matlab绘制风向与风速的关系图.zip.zip

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
recommend-type

关于初始参数异常时的参数号-无线通信系统arm嵌入式开发实例精讲

5.1 接通电源时的故障诊断 接通数控系统电源时,如果数控系统未正常启动,发生异常时,可能是因为驱动单元未 正常启动。请确认驱动单元的 LED 显示,根据本节内容进行处理。 LED显示 现 象 发生原因 调查项目 处 理 驱动单元的轴编号设定 有误 是否有其他驱动单元设定了 相同的轴号 正确设定。 NC 设定有误 NC 的控制轴数不符 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 AA 与 NC 的初始通信未正常 结束。 与 NC 间的通信异常 电缆是否断线 更换电缆 设定了未使用轴或不可 使用。 DIP 开关是否已正确设定 正确设定。 插头(CN1A、CN1B)是否 已连接。 正确连接 Ab 未执行与 NC 的初始通 信。 与 NC 间的通信异常 电缆是否断线 更换电缆 确认重现性 更换单元。12 通过接通电源时的自我诊 断,检测出单元内的存储 器或 IC 存在异常。 CPU 周边电路异常 检查驱动器周围环境等是否 存在异常。 改善周围环 境 如下图所示,驱动单元上方的 LED 显示如果变为紧急停止(E7)的警告显示,表示已 正常启动。 图 5-3 NC 接通电源时正常的驱动器 LED 显示(第 1 轴的情况) 5.2 关于初始参数异常时的参数号 发生初始参数异常(报警37)时,NC 的诊断画面中,报警和超出设定范围设定的异常 参数号按如下方式显示。 S02 初始参数异常 ○○○○ □ ○○○○:异常参数号 □ :轴名称 在伺服驱动单元(MDS-D/DH –V1/V2)中,显示大于伺服参数号的异常编号时,由于 多个参数相互关联发生异常,请按下表内容正确设定参数。 87
recommend-type

微电子实验器件课件21

1. 肖特基势垒二极管工艺流程及器件结构 2. 编写该器件的 Athena 程序,以得到器件精确的结构图 3. 定义初始衬底 5. 沉积 Pt 薄膜并剥离 6.

最新推荐

recommend-type

“短进程优先”、“时间片轮转”、“高响应比优先”调度算法

本实验涉及三种常见的调度算法:短进程优先(SPF)、时间片轮转(RR)和高响应比优先(HRN),目的是通过模拟调度过程来理解这些算法的工作原理及其对系统性能的影响。 首先,让我们逐一探讨这三种算法: 1. **短...
recommend-type

034-基于AT89C52的矩阵键盘扫描proteus仿真设计.rar

51单片机
recommend-type

双级式储能模型,可做充放电转以及低电压故障穿越,含有负序抑制模块,可做对称故障与不对称故障

双级式储能模型,可做充放电转以及低电压故障穿越,含有负序抑制模块,可做对称故障与不对称故障
recommend-type

郑州升达大学2024-2025第一学期计算机视觉课程期末试卷,

郑州升达大学2024-2025第一学期计算机视觉课程期末试卷,原版。配套教材为《OpenCV计算机视觉基础教程》夏帮贵主编。
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解
recommend-type

内网如何运行docker pull mysql:5.7

要在内网中运行Docker的pull命令来获取MySQL 5.7镜像,可以按照以下步骤进行操作: 1. 确保在内网中的计算机上安装了Docker。 2. 打开终端或命令提示符,并使用以下命令登录到Docker镜像仓库: ```shell docker login <repository> ``` 将`<repository>`替换为MySQL镜像仓库的地址,例如`mysql`或`docker.io/mysql`。 3. 输入用户名和密码以登录到镜像仓库。 4. 使用以下命令从镜像仓库拉取MySQL 5.7镜像: ```shell docker pull <repository>/my