from sklearn.preprocessing import MinMaxScaler mms = MinMaxScaler() mms.fit(X_train) X_train = mms.transform(X_train) X_test = mms.transform(X_test) 是在干什么
时间: 2024-04-28 11:26:18 浏览: 121
这段代码是使用sklearn库中的MinMaxScaler对数据进行归一化处理。具体来说,它首先实例化一个MinMaxScaler对象mms,并使用训练集数据X_train对其进行拟合,即计算出每个特征的最大值和最小值。然后,它将训练集数据X_train和测试集数据X_test都进行了归一化处理,即将每个特征的值都缩放到了[0, 1]的范围内。归一化处理的目的是为了让不同特征之间的值具有可比性,并且避免某些特征对模型的影响过大。
相关问题
1. 采用Python编程语言自己实现StandardScaler和MinMaxScaler这两种数据标准化方法,并用于乳腺癌数据的分类。 要求模型预测的准确率结果必须与以下sklearn的一样: from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split cancer = load_breast_cancer() X = cancer.data y = cancer.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.3) from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() #scaler = MinMaxScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) from sklearn.linear_model import LogisticRegression logreg=LogisticRegression() logreg.fit(X_train_scaled, y_train) y_pred = logreg.predict(X_test_scaled) from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred)
好的,这是一个很好的问题!数据标准化是数据预处理中非常重要的一步,可以帮助我们更好地训练模型。下面是我为你提供的Python代码,可以自己实现StandardScaler和MinMaxScaler这两种数据标准化方法,并用于乳腺癌数据的分类。
```
import numpy as np
class StandardScaler:
def __init__(self):
self.mean_ = None
self.std_ = None
def fit(self, X):
self.mean_ = np.mean(X, axis=0)
self.std_ = np.std(X, axis=0)
def transform(self, X):
return (X - self.mean_) / self.std_
class MinMaxScaler:
def __init__(self):
self.min_ = None
self.max_ = None
def fit(self, X):
self.min_ = np.min(X, axis=0)
self.max_ = np.max(X, axis=0)
def transform(self, X):
return (X - self.min_) / (self.max_ - self.min_)
# 加载乳腺癌数据
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.3)
# 使用自己实现的StandardScaler进行数据标准化
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 使用逻辑回归进行分类
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train_scaled, y_train)
y_pred = logreg.predict(X_test_scaled)
# 计算准确率
from sklearn.metrics import accuracy_score
print("Accuracy score:", accuracy_score(y_test, y_pred))
```
这段代码中,我们分别实现了StandardScaler和MinMaxScaler这两种数据标准化方法,并且使用逻辑回归进行分类。最后,我们计算了模型预测的准确率结果,应该与sklearn的一样。
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix fruits = pd.read_table('fruit_data_with_colors.txt') fruits.head() fruits.shape print(fruits['fruit_name'].unique()) fruits.drop('fruit_label', axis=1).hist(bins=30, figsize=(9,9)) plt.suptitle("Histogram for each numeric input variable") plt.show() feature_names = ['mass', 'width', 'height', 'color_score'] x = fruits[feature_names] y = fruits['fruit_label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) logreg = LogisticRegression() logreg.fit(X_train, y_train) clf = DecisionTreeClassifier().fit(X_train, y_train) knn = KNeighborsClassifier() knn.fit(X_train, y_train) svm = SVC() svm.fit(X_train, y_train) pred = knn.predict(X_test)
你给出的代码是一个简单的机器学习分类问题的示例代码,使用的是Python中的sklearn库。该代码使用了4个输入特征来预测水果的标签,使用了4个分类器:Logistic回归、决策树、K近邻和支持向量机(SVM)。其中,MinMaxScaler用于对数据进行归一化处理,train_test_split用于将数据集分为训练集和测试集。最后使用K近邻分类器进行预测,并输出预测结果。
阅读全文