iris = datasets.load_iris() from skLearn. preprocessing import MinMaxScaLer iris_ data=MinMaxScaLer().fit transform(iris .data) print(iris_ data[0:5,:l) iris_ df=pd. DataFrame(iris_ data scolumns=['Sepal Length', 'Sepal Width's 'Petal Length', 'Peta iris_ df['target' ]=iris. target from skLearn.model seLection import train. _test _split X_train, X_test, y_train, y_test = train_test_ split(iris. _df.iloc[:0:4], iris. df['target'], random. state=. 14) from skLearn . neighbors import KNeighborsClassifier knn = KNeighborsCLassifier() knn.fit(X_ train, y_ train) y_ predicted = knn. predict(X_test) accuracy = np.mean(y predicted == y_ test) *100 print('当前分类评估器是: knn ') print('当前Accuracy是: %.1f' %accuracy + '%' )
时间: 2024-04-21 15:28:46 浏览: 98
KNN,SVM,决策树,朴素贝叶斯.rar_SVM_python SVM 分类_sklearn 包的基本使用_sklearn分类
这段代码实现了使用KNN算法对鸢尾花数据集进行分类,并计算出分类准确率。具体步骤如下:
1. 首先使用`datasets.load_iris()`函数加载鸢尾花数据集。
2. 导入`MinMaxScaler`函数,使用`MinMaxScaler().fit_transform(iris.data)`对数据集进行归一化处理。
3. 将归一化处理后的数据集转换为`pandas`数据框,并添加`target`列,即数据集的类别信息。
4. 使用`train_test_split`函数将数据集分为训练集和测试集。
5. 导入`KNeighborsClassifier`函数,并创建一个KNN分类器。
6. 使用训练集数据拟合KNN分类器,然后使用测试集数据对其进行预测。
7. 计算预测结果与测试集实际结果的准确率,并将其打印出来。
需要注意的是,这段代码中的第5行存在语法错误,应该为`MinMaxScaler().fit_transform(iris.data)`而不是`MinMaxScaLer().fit transform(iris.data)`。同时,第22行的代码也存在错误,应该为`KNeighborsClassifier()`而不是`KNeighborsCLassifier()`。
阅读全文