对下面代码进行结果分析import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt np.random.seed(5) from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from pylab import mpl # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target #最小最大标准化 min_max_scaler = preprocessing.MinMaxScaler() X_minmax=min_max_scaler.fit_transform(X) batch_size =15 num_cluster =3 #K均值算法拟合 clf=MiniBatchKMeans(n_clusters=num_cluster,batch_size=batch_size,init="random") clf.fit(X_minmax) #拟合中心 centers = clf.cluster_centers_ #预测标签 pre_clu=clf.labels_ print(pre_clu) vmarker={0:'^',1:'s',2:'D',} mValue=[vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:,1],X_minmax[:,2]): plt.scatter(_x, _y,marker=_marker,c="grey") plt.scatter(centers[:,1],centers[:,2],marker="*",s=200,c='black') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sc_k()

时间: 2024-03-31 20:37:23 浏览: 21
这段代码使用MiniBatchKMeans算法对鸢尾花数据集进行了聚类,并展示了聚类结果和最佳的K值。 具体分析如下: 1. 数据预处理:使用MinMaxScaler对数据进行了最小最大标准化处理,将所有特征缩放到0到1之间。 2. 聚类过程:使用MiniBatchKMeans算法对处理后的数据进行聚类,聚为3类。拟合完成后,输出预测标签pre_clu。 3. 可视化:将聚类结果可视化,将数据点按照聚类标签的不同用不同形状的标记表示,并将聚类中心用黑色星号标记出来。 4. 最佳K值:使用轮廓系数法求解最佳的K值。在这段代码中,使用了KMeans算法对iris数据进行聚类,计算不同K值下的轮廓系数,并将结果可视化。从图中可以看出,轮廓系数达到最大值时,对应的K值为2或3。 因此,根据这段代码的聚类结果和轮廓系数法的求解结果,可以将鸢尾花数据集聚为3类,聚类质量相对较好。
相关问题

解释如下代码:import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error

这段代码是导入了一些 Python 的第三方库,其作用如下: 1. `numpy`:Python 数组计算库,提供了高效的数组运算功能。 2. `matplotlib.pyplot`:Python 绘图库,用于绘制图形和数据可视化。 3. `sklearn.linear_model`:Scikit-Learn 库中的线性回归模型。 4. `sklearn.datasets`:Scikit-Learn 库中的数据集生成工具。 5. `sklearn.model_selection`:Scikit-Learn 库中的模型选择工具,用于数据集的分割、交叉验证等操作。 6. `sklearn.preprocessing`:Scikit-Learn 库中的数据预处理工具,用于数据标准化、归一化等操作。 7. `sklearn.metrics`:Scikit-Learn 库中的性能评估工具,用于计算模型的性能指标,如均方误差等。 这些库都是数据分析和机器学习中常用的工具,可以帮助我们更加方便地进行数据处理和模型构建。

import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn import preprocessing

你给出的是 Python 的代码,我看到你正在使用一些流行的 Python 库,如 NumPy、matplotlib、pandas 和 seaborn,以及一些机器学习相关的库,如 scikit-learn。这些库都是非常有用的,能够帮助你进行数据分析、可视化和建模。在这段代码中,你还导入了波士顿房价数据集(load_boston),并使用 train_test_split 函数将数据集拆分为训练集和测试集。然后,你使用线性回归模型(LinearRegression)对数据进行拟合,并使用 metrics 库中的一些函数来评估模型的性能。最后,你使用 preprocessing 库对数据进行标准化处理。这些步骤都是非常常见的机器学习流程中的一部分,用于数据预处理、建模和评估。

相关推荐

import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LassoCV from sklearn.model_selection import train_test_split # 加载数据集 abalone = fetch_openml(name='abalone', version=1, as_frame=True) # 获取特征和标签 X = abalone.data y = abalone.target # 对性别特征进行独热编码 gender_encoder = OneHotEncoder(sparse=False) gender_encoded = gender_encoder.fit_transform(X[['Sex']]) # 特征缩放 scaler = StandardScaler() X_scaled = scaler.fit_transform(X.drop('Sex', axis=1)) # 合并编码后的性别特征和其他特征 X_processed = np.hstack((gender_encoded, X_scaled)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_processed, y, test_size=0.2, random_state=42) # 初始化Lasso回归模型 lasso = LassoCV(alphas=[1e-4], random_state=42) # 随机梯度下降算法迭代次数和损失函数值 n_iterations = 200 losses = [] for iteration in range(n_iterations): # 随机选择一个样本 random_index = np.random.randint(len(X_train)) X_sample = X_train[random_index].reshape(1, -1) y_sample = y_train[random_index].reshape(1, -1) # 计算目标函数值与最优函数值之差 lasso.fit(X_sample, y_sample) loss = np.abs(lasso.coef_ - lasso.coef_).sum() losses.append(loss) # 绘制迭代效率图 plt.plot(range(n_iterations), losses) plt.xlabel('Iteration') plt.ylabel('Difference from Optimal Loss') plt.title('Stochastic Gradient Descent Convergence') plt.show()上述代码报错,请修改

最新推荐

recommend-type

160套-2G-Web网站项目-HTML5源码合集-涵盖多行业网站(商业&科技&培训&商城&课设&毕设&网页简历等模板).7z

HTML网站模板凭借其高度的灵活性和易用性,成为前端开发者的得力助手。这些模板通常预先设计好了页面的布局和样式,开发者可以直接在此基础上进行内容的填充和功能的开发,大大节省了从0到1的时间成本。同时,优质的HTML模板会经过多次的兼容性测试,确保在不同浏览器和设备上都能呈现出良好的视觉效果,提升了用户体验。你是否正在为网站项目寻找灵感与起点?现在,我们为你精心准备了160套、总容量高达2G的Web网站项目HTML5源码合集!无论你是需要搭建商业、科技、培训、商城类网站,还是用于课程设计、毕业设计、网页简历等,这里都能找到心仪的模板。每一套模板都经过精心设计和优化,让你轻松打造专业、美观的网站。快来查看这份宝藏资源,让你的项目事半功倍吧!
recommend-type

aiohttp-3.7.0b0-cp37-cp37m-manylinux2014_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

架构师技术分享 支付宝高可用系统架构 共46页.pptx

支付宝高可用系统架构 支付宝高可用系统架构是支付宝核心支付平台的架构设计和系统升级的结果,旨在提供高可用、可伸缩、高性能的支付服务。该架构解决方案基于互联网与云计算技术,涵盖基础资源伸缩性、组件扩展性、系统平台稳定性、可伸缩、高可用的分布式事务处理与服务计算能力、弹性资源分配与访问管控、海量数据处理与计算能力、“适时”的数据处理与流转能力等多个方面。 1. 可伸缩、高可用的分布式事务处理与服务计算能力 支付宝系统架构设计了分布式事务处理与服务计算能力,能够处理高并发交易请求,确保系统的高可用性和高性能。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 2. 弹性资源分配与访问管控 支付宝系统架构设计了弹性资源分配与访问管控机制,能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。该机制还能够提供强大的访问管控功能,保护系统的安全和稳定性。 3. 海量数据处理与计算能力 支付宝系统架构设计了海量数据处理与计算能力,能够处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 4. “适时”的数据处理与流转能力 支付宝系统架构设计了“适时”的数据处理与流转能力,能够实时地处理大量的数据请求,确保系统的高性能和高可用性。该能力基于互联网与云计算技术,能够弹性地扩展计算资源,满足业务的快速增长需求。 5. 安全、易用的开放支付应用开发平台 支付宝系统架构设计了安全、易用的开放支付应用开发平台,能够提供强大的支付应用开发能力,满足业务的快速增长需求。该平台基于互联网与云计算技术,能够弹性地扩展计算资源,确保系统的高可用性和高性能。 6. 架构设计理念 支付宝系统架构设计基于以下几点理念: * 可伸缩性:系统能够根据业务需求弹性地扩展计算资源,满足业务的快速增长需求。 * 高可用性:系统能够提供高可用性的支付服务,确保业务的连续性和稳定性。 * 弹性资源分配:系统能够根据业务需求动态地分配计算资源,确保系统的高可用性和高性能。 * 安全性:系统能够提供强大的安全功能,保护系统的安全和稳定性。 7. 系统架构设计 支付宝系统架构设计了核心数据库集群、应用系统集群、IDC数据库交易系统账户系统V1LB、交易数据库账户数据库业务一致性等多个组件。这些组件能够提供高可用性的支付服务,确保业务的连续性和稳定性。 8. 业务活动管理器 支付宝系统架构设计了业务活动管理器,能够控制业务活动的一致性,确保业务的连续性和稳定性。该管理器能够登记业务活动中的操作,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。 9. 系统故障容忍度高 支付宝系统架构设计了高可用性的系统故障容忍度,能够在系统故障时快速恢复,确保业务的连续性和稳定性。该系统能够提供强大的故障容忍度,确保系统的安全和稳定性。 10. 系统性能指标 支付宝系统架构设计的性能指标包括: * 系统可用率:99.992% * 交易处理能力:1.5万/秒 * 支付处理能力:8000/秒(支付宝账户)、2400/秒(银行) * 系统处理能力:处理每天1.5亿+支付处理能力 支付宝高可用系统架构设计了一个高可用、高性能、可伸缩的支付系统,能够满足业务的快速增长需求,确保业务的连续性和稳定性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果

![Matlab画图线型实战:3步绘制复杂多维线型,提升数据可视化效果](https://file.51pptmoban.com/d/file/2018/10/25/7af02d99ef5aa8531366d5df41bec284.jpg) # 1. Matlab画图基础 Matlab是一款强大的科学计算和数据可视化软件,它提供了一系列用于创建和自定义图形的函数。本章将介绍Matlab画图的基础知识,包括创建画布、绘制线型以及设置基本属性。 ### 1.1 创建画布 在Matlab中创建画布可以使用`figure`函数。该函数创建一个新的图形窗口,并返回一个图形句柄。图形句柄用于对图形进
recommend-type

基于R软件一个实际例子,实现空间回归模型以及包括检验和模型选择(数据集不要加州的,附代码和详细步骤,以及数据)

本文将使用R软件和Boston房价数据集来实现空间回归模型,并进行检验和模型选择。 数据集介绍: Boston房价数据集是一个观测500个社区的房屋价格和其他16个变量的数据集。每个社区的数据包含了包括犯罪率、房产税率、学生-老师比例等特征,以及该社区的房价中位数。该数据集可用于探索房价与其他变量之间的关系,以及预测一个新社区的房价中位数。 数据集下载链接:https://archive.ics.uci.edu/ml/datasets/Housing 1. 导入数据集和必要的包 ```r library(spdep) # 空间依赖性包 library(ggplot2) # 可
recommend-type

WM9713 数据手册

WM9713 数据手册 WM9713 是一款高度集成的输入/输出设备,旨在为移动计算和通信应用提供支持。下面是 WM9713 的详细知识点: 1. 设备架构:WM9713 采用双 CODEC 运算架构,支持 Hi-Fi 立体声编解码功能通过 AC 链接口,同时还支持语音编解码功能通过 PCM 类型的同步串行端口(SSP)。 2. 音频功能:WM9713 提供了一个第三个 AUX DAC,可以用于生成监督音、铃声等不同采样率的音频信号,独立于主编解码器。 3. 触摸面板接口:WM9713 可以直接连接到 4 线或 5 线触摸面板,减少系统中的总组件数量。 4. 音频连接:WM9713 支持多种音频连接方式,包括立体声麦克风、立体声耳机和立体声扬声器。且可以使用无电容连接到耳机、扬声器和耳机,减少成本和 PCB 面积。 5. 模拟输入/输出:WM9713 提供了多个模拟输入和输出引脚,用于无缝集成与模拟连接的无线通信设备。 6. 设备控制:所有设备功能都可以通过寄存器访问来控制,实现了灵活的设备管理和配置。 7. 功率管理:WM9713 采用低功率设计,降低系统的功率消耗,提高系统的可靠性和续航能力。 8. 工业应用:WM9713 广泛应用于移动计算、通信、消费电子等领域,满足不同行业的需求和应用场景。 9. 技术参数:WM9713 的技术参数包括工作温度、供电电压、时钟频率、数据传输速率等,满足不同应用场景的需求。 10. 应用场景:WM9713 可以应用于智能手机、平板电脑、笔记本电脑、智能家居设备等移动计算和通信产品,满足不同行业的需求和应用场景。 WM9713 是一款功能强大、灵活性高的输入/输出设备,广泛应用于移动计算和通信领域,为不同行业的应用场景提供了可靠的解决方案。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Matlab绘图线型详解:从基础到高级,掌握绘制各种线型的艺术

![Matlab绘图线型详解:从基础到高级,掌握绘制各种线型的艺术](https://i2.hdslb.com/bfs/archive/99852f34a4253a5317b1ba0051ddc40893f5d1f8.jpg@960w_540h_1c.webp) # 1. Matlab绘图基础** Matlab绘图是数据可视化和分析的重要工具。本章将介绍Matlab绘图的基础知识,包括图形窗口和坐标系。 ### 1.1 图形窗口和坐标系 Matlab的图形窗口是一个矩形区域,用于显示图形。坐标系是图形窗口中的一个二维空间,由x轴和y轴组成。x轴表示水平方向,y轴表示垂直方向。原点(0,
recommend-type

如何用matlab写出介数中心性代码

介数中心性是一种网络中节点重要性的度量方法,它表示网络中一个节点在别的节点之间作为中介的程度。介数中心性越高,表示该节点在网络中起到的中介作用越大。 下面是使用MATLAB实现介数中心性的代码: ```matlab % 构造一个邻接矩阵表示网络 A = [0 1 0 1 0; 1 0 1 1 0; 0 1 0 1 1; 1 1 1 0 1; 0 0 1 1 0]; % 计算每个节点的介数中心性 n = size(A,1); BC = zeros(n,1); for s = 1:n S = []; % 存储从s节点开始到其他节点的最短路径