dummies5 = pd.get_dummies(data['睡眠障碍'], prefix='睡眠障碍') data=data.drop('睡眠障碍',axis=1).join(dummies5) data=data.drop('睡眠障碍_无',axis=1)
时间: 2023-12-01 22:04:13 浏览: 56
这段代码是在进行 one-hot 编码,将数据集中的“睡眠障碍”这一列转换成多个列,每个列代表一个不同的取值。具体来说,首先使用 `get_dummies` 函数对“睡眠障碍”这一列进行 one-hot 编码,并指定前缀为“睡眠障碍”;接着使用 `drop` 函数将原始数据集中的“睡眠障碍”这一列删除,并将 one-hot 编码得到的多个列添加到数据集中;最后使用 `drop` 函数删除 one-hot 编码后的“睡眠障碍_无”这一列,因为这一列可以由其他列推导得出。这样处理后,数据集中的每个样本都可以用多个特征表示它所属的“睡眠障碍”类型,从而有利于进行机器学习建模和分析。
相关问题
import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)报错import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)
这个代码会报错,因为`metrics.accuracy_score()`是用于分类问题的指标,而这里是回归问题,所以不能使用该指标。
如果你想评估回归模型的性能,可以使用回归指标,如均方误差(mean squared error, MSE)、均方根误差(root mean squared error, RMSE)或平均绝对误差(mean absolute error, MAE)。例如,使用MSE指标可以这样计算:
```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pre)
print(mse)
```
请注意,当使用不同的指标时,解释和解读结果的方式也会有所不同,因此请根据你的具体问题和数据类型选择适当的指标。
data = df.copy() def perform_one_hot_encoding(df, column_name): # Perform one-hot encoding on the specified column dummies = pd.get_dummies(df[column_name], prefix=column_name) # Drop the original column and append the new dummy columns to the dataframe df = pd.concat([df.drop(column_name, axis=1), dummies], axis=1) return df # Perform one-hot encoding on the gender variable data = perform_one_hot_encoding(data, 'gender') # Perform one-hot encoding on the smoking history variable data = perform_one_hot_encoding(data, 'smoking_history') # Compute the correlation matrix correlation_matrix = data.corr() #Graph I. plt.figure(figsize=(15, 10)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5, fmt='.2f') plt.title("Correlation Matrix Heatmap") plt.show() # Create a heatmap of the correlations with the target column corr = data.corr() target_corr = corr['diabetes'].drop('diabetes') # Sort correlation values in descending order target_corr_sorted = target_corr.sort_values(ascending=False) sns.set(font_scale=0.8) sns.set_style("white") sns.set_palette("PuBuGn_d") sns.heatmap(target_corr_sorted.to_frame(), cmap="coolwarm", annot=True, fmt='.2f') plt.title('Correlation with Diabetes') plt.show()
这段代码主要是对数据进行预处理和可视化,其中包括:
1. 对数据进行复制,以免影响原始数据。
2. 定义一个函数 perform_one_hot_encoding,用于对指定的列进行独热编码,并返回处理后的数据。
3. 对数据中的 'gender' 和 'smoking_history' 列进行独热编码。
4. 计算数据中各列之间的相关性,绘制相关性矩阵热图。
5. 计算数据中各列与目标变量 'diabetes' 之间的相关性,并绘制相关性热图。
整个代码片段的作用是为了帮助数据分析人员更好地理解数据中各列之间的关系,以及各列与目标变量之间的相关性。
阅读全文