用C++写一个点云配准程序
时间: 2023-10-09 12:15:16 浏览: 331
好的,点云配准是一个广泛应用于三维重建、机器人视觉、自动驾驶等领域的基本问题。下面是一个简单的点云配准程序的C++实现,采用了ICP算法:
```cpp
#include <iostream>
#include <fstream>
#include <cmath>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <pcl/io/ply_io.h>
#include <pcl/point_types.h>
using namespace std;
using namespace Eigen;
const int MAX_ITERATIONS = 50;
const double THRESHOLD = 1e-8;
// 点云配准函数
void pointCloudRegistration(const pcl::PointCloud<pcl::PointXYZ>::Ptr& sourceCloud, const pcl::PointCloud<pcl::PointXYZ>::Ptr& targetCloud, Matrix4d& transform)
{
int n = sourceCloud->size();
MatrixXd sourceMat(3, n), targetMat(3, n);
for(int i=0; i<n; ++i)
{
sourceMat(0, i) = sourceCloud->points[i].x;
sourceMat(1, i) = sourceCloud->points[i].y;
sourceMat(2, i) = sourceCloud->points[i].z;
targetMat(0, i) = targetCloud->points[i].x;
targetMat(1, i) = targetCloud->points[i].y;
targetMat(2, i) = targetCloud->points[i].z;
}
// 初始化变换矩阵
transform = Matrix4d::Identity();
for(int iter=0; iter<MAX_ITERATIONS; ++iter)
{
// 计算最近邻点
MatrixXd sourceMatTransformed = transform * sourceMat;
vector<int> indices(n);
vector<float> sqrDistances(n);
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud(targetCloud);
for(int i=0; i<n; ++i)
{
pcl::PointXYZ sourcePoint(sourceMatTransformed(0, i), sourceMatTransformed(1, i), sourceMatTransformed(2, i));
kdtree.nearestKSearch(sourcePoint, 1, indices[i], sqrDistances[i]);
}
// 计算变换矩阵
MatrixXd A(3, 3);
VectorXd b(3);
A.setZero();
b.setZero();
double mse = 0.0;
for(int i=0; i<n; ++i)
{
if(sqrDistances[i] < THRESHOLD)
{
Vector3d sourcePoint(sourceMat(0, i), sourceMat(1, i), sourceMat(2, i));
Vector3d targetPoint(targetMat(0, indices[i]), targetMat(1, indices[i]), targetMat(2, indices[i]));
mse += (sourcePoint - targetPoint).squaredNorm();
A += sourcePoint * targetPoint.transpose();
b += targetPoint;
}
}
if(mse/n < THRESHOLD)
{
break;
}
Vector3d t = A.colPivHouseholderQr().solve(b);
Matrix4d T = Matrix4d::Identity();
T.block<3, 1>(0, 3) = t;
transform = T * transform;
}
}
int main(int argc, char** argv)
{
if(argc < 3)
{
cerr << "Usage: " << argv[0] << " source.ply target.ply" << endl;
return -1;
}
pcl::PointCloud<pcl::PointXYZ>::Ptr sourceCloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PLYReader reader;
reader.read(argv[1], *sourceCloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr targetCloud(new pcl::PointCloud<pcl::PointXYZ>);
reader.read(argv[2], *targetCloud);
Matrix4d transform;
pointCloudRegistration(sourceCloud, targetCloud, transform);
cout << "Transform Matrix:" << endl << transform << endl;
return 0;
}
```
这个程序使用了Eigen库进行矩阵计算,使用了PCL库进行点云读取和最近邻搜索。在主函数中,首先读取了两个点云文件,然后调用pointCloudRegistration函数进行点云配准,最后输出变换矩阵。pointCloudRegistration函数的实现分为两个主要步骤:计算最近邻点和计算变换矩阵。在计算最近邻点时,使用了KdTreeFLANN实现最近邻搜索,可以快速地找到每个源点对应的最近邻点。在计算变换矩阵时,使用了ICP算法,不断迭代计算变换矩阵,直到满足收敛条件为止。
阅读全文