#include<string.h> int my_strlen(char* str) { int count = 0; while (*str != '\0'); { count++; str++; } return count; } int main() { char arr[] = "abc"; int len = my_strlen(arr); printf("%d\n", len); return 0; }

时间: 2023-12-05 18:05:26 浏览: 178
这段代码实现了一个自定义的字符串长度计算函数`my_strlen`,它通过循环遍历字符串中的每个字符,统计字符的数量来计算字符串的长度。具体实现过程如下: 1. 在`my_strlen`函数中定义一个整型变量`count`,并将其初始化为0,用于统计字符串中字符的数量。 2. 使用`while`循环遍历字符串中的每个字符,直到遇到字符串的结束符`\0`为止。 3. 在循环体中,每遍历一个字符,就将`count`变量的值加1,并将指针`str`向后移动一个字符,以便下一次循环遍历下一个字符。 4. 循环结束后,将统计得到的字符数量`count`作为函数返回值。 5. 在`main`函数中定义一个字符数组`arr`,并将其初始化为字符串"abc"。 6. 调用`my_strlen`函数并将`arr`作为参数传入,得到字符串的长度并赋值给整型变量`len`。 7. 使用`printf`函数输出字符串的长度`len`。 8. 返回0表示程序正常结束。 需要注意的是,在原代码中,`while`循环的条件语句后多了一个分号`;`,这会导致循环体内的代码无法执行,从而导致程序输出的结果不正确。因此,需要将分号去掉,修改为如下代码: ``` while (*str != '\0') { count++; str++; } ```
相关问题

#include<stdio.h> #include<stdlib.h> #include<string.h> int i=0; char *Getword(char *str); int main() { char *pword, str[100], a[50][10]={0},tempt[10]; int num[50]={0},k=0,j,flag=0,t; gets(str); pword = Getword(str); strcpy(a[k],pword); num[k++]++; while(1) { pword = Getword(str); for(j=0;j<k;j++) if(strcmp(a[j],pword)==0) { num[j]++; flag = 1; break; } if(flag==0) { strcpy(a[k],pword); num[k++]++; } if(str[i-1]!='\0') break; } for(i=1;i<k;i++) for(j=0;j<k-i;j++) { if(strcmp(a[j],a[j+1])>0) { strcpy(tempt,a[j]); strcpy(a[j],a[j+1]); strcpy(a[j+1],tempt); t = num[j]; num[j] = num[j+1]; num[j+1] = t; } } for(i=0;i<k;i++) printf("%s %d\n",a[i],num[i]); return 0; } char *Getword(char *str) { static char s[10]; int j=0; for(;str[i]!='\0'&&str[i]!=' ';i++) s[j++] = str[i]; s[j] = '\0'; i++; return(s); }我的代码统计单词数出现了一些问题,请问该怎样修改

在你的代码中,统计单词数的方式是通过将输入的字符串分割成单个单词,然后对每个单词进行计数。然而,你的 `Getword` 函数可能会出现问题,因为它只能处理长度为不超过 10 个字符的单词,而且还没有检查越界情况。此外,你的代码中还存在一些其他的问题,如:使用 `gets` 函数存在缓冲区溢出的风险,使用 `strcpy` 函数时应该先检查目标数组的长度等等。 为了修复这些问题,你可以使用更安全的输入函数 `fgets`,并使用字符串处理函数 `strtok` 来分割单词。同时,你可以将单词存储在动态分配的内存中,以避免长度限制和越界问题。具体的修改方法如下: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_WORDS 50 #define MAX_WORD_LEN 100 char **split_words(char *str, int *num_words); void free_words(char **words, int num_words); int cmp_word(const void *a, const void *b); int main() { char str[MAX_WORD_LEN]; char **words; int num_words, i; fgets(str, MAX_WORD_LEN, stdin); // 使用 fgets 输入字符串,避免缓冲区溢出 words = split_words(str, &num_words); // 使用 split_words 函数分割单词 qsort(words, num_words, sizeof(char *), cmp_word); // 使用 qsort 函数对单词进行排序 for (i = 0; i < num_words; i++) { printf("%s\n", words[i]); } free_words(words, num_words); // 释放动态分配的内存 return 0; } // 分割字符串为单词,并返回单词数组和单词数量 char **split_words(char *str, int *num_words) { char *word; char **words = malloc(MAX_WORDS * sizeof(char *)); int count = 0; word = strtok(str, " \n"); // 使用 strtok 函数分割单词 while (word != NULL) { words[count] = malloc((strlen(word) + 1) * sizeof(char)); // 为每个单词分配动态内存 strcpy(words[count], word); count++; word = strtok(NULL, " \n"); } *num_words = count; return words; } // 释放单词数组中每个单词的动态内存,以及单词数组本身的动态内存 void free_words(char **words, int num_words) { int i; for (i = 0; i < num_words; i++) { free(words[i]); } free(words); } // 比较函数,用于 qsort 函数排序 int cmp_word(const void *a, const void *b) { return strcmp(*(const char **) a, *(const char **) b); } ``` 这样,你就可以更安全地统计单词数了。

#include "dht11.h" #include "protocol.h" #include "lcd.h" #include "string.h" #include <stdio.h> #include "gpio.h" #include "usart.h" #define DHT11_DATA_LOW_TIMEOUT 80 #define DHT11_DATA_HIGH_TIMEOUT 90 #define DHT11_RESPONSE_TIMEOUT 40 #define DHT11_BIT_TIMEOUT 60 DHT11_StatusTypeDef DHT11_ReadData(DHT11_Data_TypeDef* data) { uint8_t buffer[5] = {0}; uint8_t i, j; uint32_t count; // 发送开始信号 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); HAL_Delay(18); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); // 等待DHT11响应 count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } // 读取40位数据 for (i = 0; i < 40; i++) { count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_DATA_LOW_TIMEOUT) { return DHT11_ERROR; } } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_DATA_HIGH_TIMEOUT) { return DHT11_ERROR; } } buffer[i / 8] <<= 1; if (count > DHT11_BIT_TIMEOUT) { buffer[i / 8] |= 0x01; } } // 验证数据是否正确 if (buffer[4] != (buffer[0] + buffer[1] + buffer[2] + buffer[3])) { return DHT11_ERROR; } // 解析数据 data->humidity = buffer[0]; data->temp_int = buffer[2]; data->temp_dec = buffer[3]; return DHT11_OK; } void text_func_1() { DHT11_Data_TypeDef data; DHT11_ReadData(&data); printf("-->"); printf("%d.%c %d%%",data.temp_int, data.temp_dec, data.humidity); HAL_Delay(1000); if (DHT11_ReadData(&data) == DHT11_OK){ char str[16]; sprintf(str, "T:%d.%dC H:%d%%", data.temp_int, data.temp_dec, data.humidity); HAL_UART_Transmit(&huart1, (uint8_t*)str, strlen(str), HAL_MAX_DELAY); HAL_Delay(1000); } }改错

代码中需要修改的地方: 1. 在 `DHT11_ReadData` 函数中,`buffer[i / 8]` 需要先清零再左移,否则可能导致结果错误。 修改前:`buffer[i / 8] <<= 1;` 修改后:`buffer[i / 8] = 0; buffer[i / 8] |= 0x01 << (7 - (i % 8));` 2. 在 `text_func_1` 函数中,需要判断 `DHT11_ReadData` 函数返回值是否为 `DHT11_OK`,如果不是,则不执行后面的代码。 修改前: ``` DHT11_ReadData(&data); printf("-->"); printf("%d.%c %d%%",data.temp_int, data.temp_dec, data.humidity); HAL_Delay(1000); if (DHT11_ReadData(&data) == DHT11_OK){ char str[16]; sprintf(str, "T:%d.%dC H:%d%%", data.temp_int, data.temp_dec, data.humidity); HAL_UART_Transmit(&huart1, (uint8_t*)str, strlen(str), HAL_MAX_DELAY); HAL_Delay(1000); } ``` 修改后: ``` if (DHT11_ReadData(&data) == DHT11_OK){ printf("-->"); printf("%d.%c %d%%",data.temp_int, data.temp_dec, data.humidity); HAL_Delay(1000); char str[16]; sprintf(str, "T:%d.%dC H:%d%%", data.temp_int, data.temp_dec, data.humidity); HAL_UART_Transmit(&huart1, (uint8_t*)str, strlen(str), HAL_MAX_DELAY); HAL_Delay(1000); } ```
阅读全文

相关推荐

#pragma GCC optimize ("O3") #pragma pack (16)//所有的存储都是以16个字节为单位的 #include <stdio.h> #include <stdlib.h> #include <string.h> #define tolower(c) (c>='A'&&c<='Z')?c-'A'+'a':c #define DATA 5200000 #define SIZE 1000005 int trie[4200000][26]; typedef struct node { int cnt; int logo; struct node *child[26]; } Node; Node *root; char str[35000000]; typedef struct word { char wor[85]; int cnt; } Word; Word w[300000]; struct node *creat() { Node *Root = (Node *)malloc(sizeof(Node)); Root->logo = 0; Root->cnt = 0; for (int i = 0; i < 26; i++) { Root->child[i] = NULL; } return Root; } void insert(Node *root, char *word, int flag) { struct node *leaf = root; for (int i = 0; word[i] != '\0'; i++) { int index = word[i] - 'a'; if (!leaf->child[index]) { leaf->child[index] = creat(); } leaf = leaf->child[index]; } if (leaf->logo != -1) leaf->logo = flag; leaf->cnt++; } int count = 0; void dfs(Node *leaf, char *word, int level) { if (leaf->logo == 1) { word[level] = '\0'; strcpy(w[count++].wor, word); w[count - 1].cnt = leaf->cnt; } for (int i = 0; i < 26; i++) { if (leaf->child[i]) { word[level] = i + 'a'; dfs(leaf->child[i], word, level + 1); } } } int cmp(const void *p1, const void *p2) { Word *v1, *v2; v1 = (Word *)p1; v2 = (Word *)p2; if (v1->cnt != v2->cnt) return v2->cnt - v1->cnt; else return strcmp(v1->wor, v2->wor); } int main(int argc, char *argv[]) { char s[1024]; int temp; int n, m;//读入n,m; //n = atoi(argv[1]); //m = atoi(argv[2]); scanf("%d%d", &n, &m); //读入stopwords中的元素,并令末序数组值为0,即该单词不计入 root = creat(); FILE *stopwords = fopen("stopwords.txt", "r"); while (fscanf(stopwords, "%s", s) != EOF) { insert(root, s, -1); } int cnt; FILE *article = fopen("article.txt", "r"); cnt = fread(str, sizeof(char), 35000000, article); char word[85]; int w_cnt = 0; for (int i = 0; i < cnt; i++) { char c = tolower(str[i]); if (c >= 'a' && c <= 'z') { word[w_cnt++] = c; } else { word[w_cnt] = '\0'; p = 0; w_cnt = 0; if (strlen(word) > 0) { insert(root, word, 1); } }//对article中的所有单词进行计数 } dfs(root, word, 0); qsort(w, count, sizeof(w[0]), cmp); printf("%s", w[0].cnt); return 0; }

最新推荐

recommend-type

LinuxMint 手册

LinuxMint 手册
recommend-type

【最新版】 UL 1993-2024.pdf

【最新版】 UL 1993-2024.pdf
recommend-type

创建个性化的Discord聊天机器人教程

资源摘要信息:"discord_bot:用discord.py制作的Discord聊天机器人" Discord是一个基于文本、语音和视频的交流平台,广泛用于社区、团队和游戏玩家之间的通信。Discord的API允许开发者创建第三方应用程序,如聊天机器人(bot),来增强平台的功能和用户体验。在本资源中,我们将探讨如何使用Python库discord.py来创建一个Discord聊天机器人。 1. 使用discord.py创建机器人: discord.py是一个流行的Python库,用于编写Discord机器人。这个库提供了一系列的接口,允许开发者创建可以响应消息、管理服务器、与用户交互等功能的机器人。使用pip命令安装discord.py库,开发者可以开始创建和自定义他们的机器人。 2. discord.py新旧版本问题: 开发者在创建机器人时应确保他们使用的是与Discord API兼容的discord.py版本。本资源提到的机器人是基于discord.py的新版本,如果开发者有使用旧版本的需求,资源描述中指出需要查看相应的文档或指南。 3. 命令清单: 机器人通常会响应一系列命令,以提供特定的服务或功能。资源中提到了一些默认前缀“努宗”的命令,例如:help命令用于显示所有公开命令的列表;:epvpis 或 :epvp命令用于进行某种搜索。 4. 自定义和自托管机器人: 本资源提到的机器人是自托管的,并且设计为高度可定制。这意味着开发者可以完全控制机器人的运行环境、扩展其功能,并将其部署在他们选择的服务器上。 5. 关键词标签: 文档的标签包括"docker", "cog", "discord-bot", "discord-py", 和 "python-bot"。这些标签指示了与本资源相关的技术领域和工具。例如,Docker可用于容器化应用程序,使得机器人可以在任何支持Docker的操作系统上运行,从而提高开发、测试和部署的一致性。标签"python-bot"强调了使用Python语言创建Discord机器人的重要性,而"cog"可能是指在某些机器人框架中用作模块化的代码单元。 6. 文件名称列表: 资源中的"discord_bot-master"表明这是从一个源代码仓库获取的,可能是GitHub上公开的项目。"master"通常是指项目的主分支或主要版本。 总结: 通过本资源,开发者可以学习到如何利用Python和discord.py库来创建功能丰富的Discord聊天机器人。资源涵盖了安装库、创建命令响应、自托管机器人、以及如何根据新旧版本API进行适配等内容。这不仅对初学者入门,对有经验的开发者进一步学习和提升技能也是有价值的。通过理解这些知识点,开发者可以构建出适合他们需要的自定义机器人,进而为Discord社区提供附加价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Eclipse软件终极指南】:油藏数值模拟新手到专家的必经之路

![【Eclipse软件终极指南】:油藏数值模拟新手到专家的必经之路](https://ucc.alicdn.com/pic/developer-ecology/ajpxbl4ljzs5k_9cbe41a1e6e34e6a87c7f49567bdef32.jpeg?x-oss-process=image/resize,s_500,m_lfit) 参考资源链接:[油藏数值模拟基础:ECLIPSE软件详解](https://wenku.csdn.net/doc/2v49ka4j2q?spm=1055.2635.3001.10343) # 1. Eclipse软件概述及应用领域 ## 1.1 软
recommend-type

mvn 命令打包时 指定jdk 的版本、和环境变量

当使用`mvn`命令打包时,有时确实需要指定特定版本的Java Development Kit (JDK) 或设置环境变量,特别是当你的项目依赖于某个特定版本或者你需要在不同的JDK环境下进行构建。以下是两个关键的部分: 1. **指定JDK版本**: 如果你想强制`mvn`使用特定的JDK版本,可以在`.mvn/wrapper/maven-wrapper.properties`文件中添加`maven.jdk.home`属性,然后更新其值指向你想要使用的JDK安装路径。例如: ``` maven.jdk.home=/path/to/jdk-version ```
recommend-type

RequireJS实现单页应用延迟加载模块示例教程

资源摘要信息:"example-onepage-lazy-load是一个基于RequireJS的单页或多页应用程序示例项目,该项目展示了如何实现模块的延迟加载。延迟加载是一种编程技术,旨在在需要时才加载应用程序的某些部分,从而提高应用程序的初始加载速度和性能。RequireJS是一个JavaScript文件和模块加载器,它能够管理JavaScript文件的依赖关系,并且通过异步加载模块,可以进一步优化页面加载性能。 在这个示例项目中,开发者可以了解到如何使用RequireJS来实现模块的懒加载。这涉及到了几个关键点: 1. 将应用程序分为多个模块,这些模块在不立即需要时不会被加载。 2. 使用RequireJS的配置来定义模块之间的依赖关系,以及如何异步加载这些依赖。 3. 通过合并JavaScript文件,减少页面请求的数量,这有助于降低服务器负载并减少延迟。 4. 利用RequireJS的优化器(r.js)来拆分构建目标,生成更小的文件,这有助于加速应用的启动时间。 RequireJS的工作原理基于模块化编程的概念,它允许开发者将JavaScript代码拆分成逻辑块,每一个块都包含特定的功能。这些模块可以被定义为依赖其他模块,RequireJS则负责按照正确的顺序加载这些模块。它提供了一个全局的`require()`函数,开发者可以通过这个函数来声明他们的代码依赖和加载其他模块。 这个示例项目也强调了模块化和代码组织的重要性。项目的布局设计得非常简单明了,通常包含以下几个部分: - `build`目录:存放RequireJS优化器的配置文件(如option.js),用于指定如何打包和优化模块。 - `www`目录:包含所有静态资源,比如HTML页面、样式表和图片等。这个目录的结构旨在让静态资源独立于应用逻辑,便于部署和维护。 在项目中使用RequireJS可以带来几个显著的好处: - 模块化能够改善代码的组织和维护性。 - 异步加载可以减少页面加载时间,提升用户体验。 - 通过合并和压缩文件,可以减少HTTP请求的数量,加快页面渲染速度。 关于`r.js`,它是RequireJS项目中的一个命令行工具,用于自动化模块的打包和优化过程。它能够读取RequireJS的配置文件,自动处理依赖关系,合并模块,并输出优化后的文件。这对于生产环境中的代码部署尤其有用,因为它能够将多个JavaScript文件压缩成一个或几个较小的文件,从而减少网络传输的负担。 总结来说,这个示例项目演示了如何使用RequireJS来实现延迟加载和模块化,这对于优化现代Web应用的性能和管理大型代码库至关重要。开发者可以借鉴这个项目来提高自己的JavaScript应用性能,以及更好地理解和应用RequireJS的特性和最佳实践。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Arduino UNO与RGB点阵条屏:2小时速成你的个性化显示墙

![Arduino UNO与RGB点阵条屏:2小时速成你的个性化显示墙](http://blog.oniudra.cc/wp-content/uploads/2020/06/blogpost-ide-update-1.8.13-1024x549.png) 参考资源链接:[Arduino UNO驱动HUB75全彩RGB点阵屏:数字、汉字显示实战](https://wenku.csdn.net/doc/646722065928463033d76857?spm=1055.2635.3001.10343) # 1. Arduino UNO与RGB点阵条屏快速入门 ## 概述 在本章节,我们将为那些
recommend-type

1.XOR实验 2.优化方法 3.学习率衰减实验给出三个实验代码

XOR实验通常是一个经典的二进制逻辑运算示例,在机器学习领域,它用于演示如何通过神经网络解决非线性分类问题。在这个实验中,你会训练一个模型(比如Perceptron或深度学习模型)去区分0和1的异或(XOR)关系,这通常是为了展示神经网络对复杂数据的处理能力。 优化方法是指在算法设计中,寻找目标函数最小值或最大值的过程中,选择一种策略来改进模型参数的过程。常见的优化方法有梯度下降法、随机梯度下降(SGD)、动量法、自适应学习率算法(如Adam、RMSprop等)。它们的核心思想都是沿着负梯度方向更新,但有不同的加速收敛技巧。 学习率衰减实验是一种调整学习率策略,目的是防止模型在训练过程中过