怎么把累堆排序和希尔排序放在一个代码里面
时间: 2024-03-20 16:42:50 浏览: 58
可以将累堆排序和希尔排序分别写成两个函数,然后在主函数中调用这两个函数即可。下面是一个简单的示例代码:
```python
def heap_sort(arr):
# 累堆排序
pass
def shell_sort(arr):
# 希尔排序
pass
if __name__ == '__main__':
arr = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
heap_sort(arr)
print("Heap sorted array:", arr)
shell_sort(arr)
print("Shell sorted array:", arr)
```
在这个代码中,`heap_sort` 和 `shell_sort` 分别代表累堆排序和希尔排序的函数。在主函数中,我们定义一个数组 `arr`,并先调用 `heap_sort` 对其进行排序,然后再调用 `shell_sort` 进行第二次排序。最后输出排序后的数组。
相关问题
C语言数据结构包含堆排序,希尔排序,快速排序和归并排序的代码
C语言中实现这些排序算法的代码示例如下:
### 快速排序
```c
#include <stdio.h>
void swap(int* a, int* b) {
int t = *a;
*a = *b;
*b = t;
}
int partition (int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high- 1; j++) {
if (arr[j] < pivot) {
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
void quickSortExample() {
int data[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(data) / sizeof(data[0]);
quickSort(data, 0, n - 1);
printf("Sorted array: \n");
for (int i=0; i < n; i++)
printf("%d ", data[i]);
}
int main() {
quickSortExample();
return 0;
}
```
### 归并排序
```c
#include <stdio.h>
#include <stdlib.h>
void merge(int arr[], int l, int m, int r) {
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;
int L[n1], R[n2];
for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];
i = 0;
j = 0;
k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
void mergeSort(int arr[], int l, int r) {
if (l < r) {
int m = l+(r-l)/2;
mergeSort(arr, l, m);
mergeSort(arr, m+1, r);
merge(arr, l, m, r);
}
}
void mergeSortExample() {
int data[] = {12, 11, 13, 5, 6, 7};
int n = sizeof(data) / sizeof(data[0]);
mergeSort(data, 0, n - 1);
printf("Sorted array: \n");
for (int i=0; i < n; i++)
printf("%d ", data[i]);
}
int main() {
mergeSortExample();
return 0;
}
```
其他如堆排序和希尔排序由于涉及到更复杂的逻辑和数据结构操作,这里就不直接给出完整代码了,它们通常需要额外维护一个辅助堆或者中间数组。如果你需要完整的代码,可以参考相关的算法教程或在线资源。请注意在实际项目中,这些代码会放在单独的函数模块中,并且需要处理边界条件和错误检查。
数据结构查找和排序c+全代码
数据结构是计算机科学中的基础知识,它涉及到如何存储和组织数据以便于快速访问和操作。查找和排序是数据结构的两个重要方面。
查找主要包括线性查找(顺序查找)和二分查找等,下面是简单的C++实现:
```cpp
// 线性查找示例
int linear_search(int arr[], int n, int target) {
for (int i = 0; i < n; i++) {
if (arr[i] == target)
return i;
}
return -1; // 如果未找到目标元素,则返回-1
}
// 二分查找示例(数组已排序)
int binary_search(int arr[], int left, int right, int target) {
while (left <= right) {
int mid = left + (right - left) / 2;
if (arr[mid] == target)
return mid;
else if (arr[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
return -1; // 未找到目标,同样返回-1
}
```
至于排序,常见的算法有冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。这里给出快速排序的一个简单实现:
```cpp
void quick_sort(int arr[], int low, int high) {
if (low < high) {
int pivot = partition(arr, low, high);
quick_sort(arr, low, pivot - 1); // 对左半部分递归排序
quick_sort(arr, pivot + 1, high); // 对右半部分递归排序
}
}
// 分区函数,将数组分为两部分,pivot放在正确位置
int partition(int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
std::swap(arr[i], arr[j]);
}
}
std::swap(arr[i + 1], arr[high]);
return (i + 1);
}
```
以上只是基础版本,实际应用中可能会根据需求对性能和复杂度进行优化。
阅读全文
相关推荐
















