请你使用pytorch 来实现支持向量机
时间: 2023-08-01 12:07:50 浏览: 86
支持向量机的python实现
好的,我可以为您提供一个简单的支持向量机实现,使用PyTorch作为基础库。
首先,我们需要导入所需的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
接下来,我们可以生成一些模拟数据,使用`make_classification`函数来生成二元分类数据:
```python
X, y = make_classification(n_samples=1000, n_features=20, n_informative=10,
n_redundant=0, n_classes=2, random_state=42)
```
我们将数据集分成训练集和测试集,并进行标准化:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train, y_train = torch.from_numpy(X_train).float(), torch.from_numpy(y_train).float()
X_test, y_test = torch.from_numpy(X_test).float(), torch.from_numpy(y_test).float()
```
现在,我们可以定义SVM模型和损失函数:
```python
class SVM(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(20, 1)
def forward(self, x):
out = self.fc1(x)
return out
model = SVM()
criterion = nn.HingeEmbeddingLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
```
我们选择使用Hinge Loss作为损失函数,并使用SGD作为优化器。
最后,我们可以进行训练和测试:
```python
epochs = 100
batch_size = 32
for epoch in range(epochs):
running_loss = 0.0
for i in range(0, len(X_train), batch_size):
inputs = X_train[i:i+batch_size]
labels = y_train[i:i+batch_size]
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(), 2*labels-1)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1} loss: {running_loss/len(X_train)}")
# Testing
with torch.no_grad():
correct = 0
total = 0
for i in range(0, len(X_test), batch_size):
inputs = X_test[i:i+batch_size]
labels = y_test[i:i+batch_size]
outputs = model(inputs)
predicted = torch.sign(outputs)
total += labels.size(0)
correct += (predicted.squeeze() == 2*labels-1).sum().item()
print(f"Accuracy: {correct/total}")
```
这个简单的SVM实现只有一个全连接层,并使用线性激活函数。在每个epoch中,我们遍历训练数据并进行前向传递、反向传递和优化器更新。在测试阶段,我们使用模型进行预测,并计算准确率。
希望这个简单的实现可以帮助您了解如何使用PyTorch实现支持向量机。
阅读全文