matlab已知一个二阶线性常系数差分方程用下式表示: y(n)+a1y(n-1)+a2y(n-2)= b0x(n)+b1x(n-1)+b2x(n-2), 已知输入序列 ,采用两种方法求出该系统的响应
时间: 2023-12-24 19:03:37 浏览: 88
基于MATLAB的线性常系数差分方程求解.pdf
5星 · 资源好评率100%
好的,我可以为你提供 MATLAB 代码,来计算该系统的响应:
假设输入序列为 x,a1、a2、b0、b1、b2 为已知常数,且已知初始条件 y(0) 和 y(1)。
方法一:直接求解差分方程
```
% 初始化
N = length(x); % 输入序列长度
y = zeros(1, N); % 输出序列
y(1) = y0; % 初始条件 y(0)
y(2) = y1; % 初始条件 y(1)
% 求解差分方程
for n = 3:N
y(n) = -a1*y(n-1) - a2*y(n-2) + b0*x(n) + b1*x(n-1) + b2*x(n-2);
end
```
其中,y0 和 y1 为初始条件。
方法二:利用系统的传递函数求解
```
% 计算传递函数的零点和极点
B = [b0 b1 b2];
A = [1 a1 a2];
[z, p, K] = tf2zp(B, A);
% 计算系统的输出
y = filter(B, A, x);
```
其中,tf2zp 函数用于计算系统的零点和极点,filter 函数用于利用系统的传递函数计算输出序列。
综上,上述代码可以计算出该系统的响应序列 y。
阅读全文