逻辑斯蒂回顾判定运动状态详细代码
时间: 2024-09-27 08:14:43 浏览: 59
逻辑斯蒂回归(Logistic Regression)通常用于分类任务,包括二分类问题,而运动状态的判定可能涉及到对某个动作或事件发生的可能性进行预测。这里简要概述一个基本的Python代码示例,使用scikit-learn库实现逻辑回归来判断运动状态:
```python
# 导入所需库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
# 假设你有一个包含运动数据的数据集df,特征列如'feature1', 'feature2', 等,目标变量'throw_status'
data = df[['feature1', 'feature2', ...]]
target = df['throw_status']
# 数据预处理
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 创建并训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
# 判断运动状态
def predict_motion_state(features):
scaled_features = scaler.transform(features.reshape(1, -1))
return model.predict(scaled_features)
# 示例用法
input_data = [0.5, 0.7] # 这里的值需要替换为实际的输入特征
motion_status = predict_motion_state(input_data)
print(f"运动状态判定结果: {motion_status}")
阅读全文