Granger Causality number of lags (no zero) 1 ssr based F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 ssr based chi2 test: chi2=0.6864 , p=0.4074 , df=1 likelihood ratio test: chi2=0.6638 , p=0.4152 , df=1 parameter F test: F=0.4805 , p=0.5106 , df_denom=7, df_num=1 Granger Causality number of lags (no zero) 2 ssr based F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 ssr based chi2 test: chi2=2.7003 , p=0.2592 , df=2 likelihood ratio test: chi2=2.3615 , p=0.3071 , df=2 parameter F test: F=0.6001 , p=0.5917 , df_denom=4, df_num=2 Granger Causality number of lags (no zero) 3 ssr based F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3 ssr based chi2 test: chi2=10.3943 , p=0.0155 , df=3 likelihood ratio test: chi2=6.6608 , p=0.0835 , df=3 parameter F test: F=0.4331 , p=0.7741 , df_denom=1, df_num=3
时间: 2023-11-21 09:04:33 浏览: 149
这段文字描述了格兰杰因果性测试的结果。格兰杰因果性测试是一种统计方法,用于判断两个时间序列之间是否存在因果关系。在这里,对于每一种滞后期的情况,都进行了四种不同的统计检验,包括 ssr based F test、ssr based chi2 test、likelihood ratio test 和 parameter F test。每种检验的结果都包括一个统计量和一个 p 值,p 值表示检验的显著性水平。如果 p 值小于等于 0.05,则认为存在显著的因果关系。在这里,可以看出对于滞后期为 1 和 2 的情况,p 值都大于 0.05,因此认为不存在因果关系。而对于滞后期为 3 的情况,ssr based chi2 test 和 likelihood ratio test 的 p 值都小于 0.05,因此认为存在显著的因果关系。
相关问题
granger_test = results.test_causality('0', ['1'], kind='f')如何修改设置延迟项
如果你想修改延迟项,可以在 `test_causality` 函数中增加 `lag_order` 参数。例如,如果你想增加延迟项,可以将 `lag_order` 设置为一个较大的数字,如:
```
granger_test = results.test_causality('0', ['1'], kind='f', lag_order=10)
```
这将在因果关系检验中考虑 10 个滞后值。你可以根据你的数据和实际需求来调整这个参数。值得注意的是,增加滞后值可能会增加计算时间。
granger_test = results.test_causality('ZCI', ['I'], kind='f')
这段代码使用了 `grangercausalitytests` 方法中的 `test_causality` 函数,对于模型中的自变量和因变量进行格兰杰因果性检验。其中,'ZCI' 是自变量,['I'] 是因变量,kind='f' 表示使用 F 检验方法。结果将会返回一个字典类型的数据,包含了各种检验结果的统计信息和 p 值等。
阅读全文