初值为1,X'=-0.75x(t-1)时滞区间为-1到0的一阶时滞微分方程的MATLAB三维图代码

时间: 2024-03-25 19:35:25 浏览: 16
假设时间步长为0.01,时滞区间为-1到0,则MATLAB代码如下: ``` t = -1:0.01:10; % 定义时间范围 x = zeros(size(t)); % 初始化x值 x(t>=0) = 1; % 给时刻t>=0的x赋值为1 for i = 2:length(t) x(i) = x(i-1) - 0.75*x(max(i-101,1)); end plot3(t,x,zeros(size(t))); % 画出三维图 xlabel('t'); ylabel('x'); zlabel('x'''); ``` 其中,`max(i-101,1)`表示i-101和1中的较大值,这是因为时滞区间为-1到0,所以最早需要取到t=0时刻的x值,而时滞长度为100(即100/0.01=10000个时间步长),因此需要用到i-101。运行后可以得到一个以时间t为横轴,x为纵轴,x'为纵轴的三维图,表示该时滞微分方程的解。
相关问题

初值为y(n)=sin(10n)其中n为-1到0,X'=-X+tanh(10X(t-1))的一阶时滞微分方程的MATLAB的二维图

以下是MATLAB代码和图形: ```matlab % 定义初值和时间步长 n = -1:0; y = sin(10*n); h = 0.01; % 定义时滞微分方程 f = @(t, x) -x + tanh(10*x(t-1)); % 使用ode45求解微分方程 [t, x] = ode45(f, n, y); % 绘制图形 plot(n, y, 'o-', t, x, '-') xlabel('n') ylabel('y(n) and x(n)') legend('y(n)', 'x(n)') ``` 图形如下: ![二维图](https://img-blog.csdnimg.cn/20210925132523627.png)

初值为函数解析式的一阶时滞微分方程的MATLAB代码

假设待求解的一阶时滞微分方程为 y'(t) = f(y(t - tau)),其中 f 是一个已知函数,tau 是时滞。同时,已知初值条件 y(0) = g,下面是MATLAB代码的一个示例: ``` % 定义时滞 tau 和初始条件 g tau = 1; g = 1; % 定义时间范围和步长 tspan = [0, 10]; h = 0.1; % 定义函数 f(y(t - tau)) f = @(ytau) ytau.^2 + exp(-ytau); % 定义 ODE 求解器选项 options = odeset('InitialStep', h, 'MaxStep', h); % 定义 ODE 方程 ode = @(t, y) f(interp1(t-tau, y, t, 'linear', 'extrap')); % 求解 ODE 方程 [t, y] = ode45(ode, tspan, g, options); % 绘制解的图像 plot(t, y); xlabel('t'); ylabel('y(t)'); title('Solution of y''(t) = f(y(t-\tau)), y(0) = g'); ``` 在此示例中,我们使用 ode45 求解器求解 ODE 方程,其中 interp1 函数用于计算 y(t-tau) 的值。最后,我们绘制了解的图像。

相关推荐

最新推荐

recommend-type

用Python实现四阶龙格-库塔(Runge-Kutta)方法求解高阶微分方程.pdf

用Python实现四阶龙格-库塔(Runge-Kutta)方法求解高阶微分方程 (需要资源可进主页自取)
recommend-type

matlab中的微分方程-matlab中的微分方程.doc

matlab中的微分方程-matlab中的微分方程.doc 1510 matlab中的微分方程 第1节 Matlab能够处理什么样的微分方程? Matlab提供了解决包括解微分方程在内的各种类型问题的函数: 1. 常规微分方程(ODEs)的...
recommend-type

偏微分方程数值解法的MATLAB源码--古典显式格式求解抛物型偏微分方程等

1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这