能够向我示例将yolov5的主干网络更改为ResNet50的代码吗
时间: 2023-12-14 16:38:45 浏览: 160
是的,您可以按照以下步骤将Yolov5的主干网络更改为ResNet50:
1. 首先,您需要从yolov5/models/yolo.py文件中导入定义主干网络的代码。
```python
from models.common import Conv, DWConv
from models.yolo import Detect, Focus, UpSample, Yolo, yolov5s, yolov5m, yolov5l, yolov5x
```
2. 接下来,您需要将yolov5s/yolov5m/yolov5l/yolov5x函数中的主干网络定义更改为ResNet50。您可以从torchvision.models.resnet中导入ResNet50,并将其作为主干网络。
```python
import torch.nn as nn
import torchvision.models.resnet as resnet
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
# Define ResNet50 as backbone
backbone = resnet.resnet50(pretrained=pretrained)
# Remove the last linear layer and average pooling layer
backbone = nn.Sequential(*list(backbone.children())[:-2])
# Define other layers
...
```
3. 最后,您需要在Yolo类中使用新定义的主干网络。
```python
class Yolo(nn.Module):
def __init__(self, cfg='yolov5s.yaml'):
super().__init__()
self.channels = [256, 512, 1024]
self.strides = [8, 16, 32]
self._create_modules(parse_model_cfg(cfg))
# Define ResNet50 as backbone
self.backbone = resnet.resnet50(pretrained=pretrained)
self.backbone = nn.Sequential(*list(self.backbone.children())[:-2])
# Define other layers
...
def forward(self, x, augment=False, profile=False):
...
```
请注意,这只是一个示例代码,并且您可能需要根据您的需求进行更改。
阅读全文