为以下py代码添加注释: from ovito.io import import_file, export_file from ovito.modifiers import ClusterAnalysisModifier import numpy pipeline = import_file("dump.lammpstrj", multiple_frames=True) pipeline.modifiers.append(ClusterAnalysisModifier( cutoff=4, sort_by_size=True, compute_com=True, compute_gyration=True)) # Open the output file for writing with open('cluster_sizes.txt', 'w') as output_file: # Loop over all frames in the input file for frame in range(pipeline.source.num_frames): # Compute the data for the current frame data = pipeline.compute(frame) # Extract the cluster sizes cluster_table = data.tables['clusters'] num_clusters = len(cluster_table['Center of Mass']) # Write the cluster sizes to the output file output_file.write(f"Time: {data.attributes['Timestep']},Cluster_count:{data.attributes['ClusterAnalysis.cluster_count']}, largest_size: {data.attributes['ClusterAnalysis.largest_size']}\n") # Export results of the clustering algorithm to a text file: export_file(data, 'clusters'+str(frame)+'.txt', 'txt/table', key='clusters') export_file(data, 'cluster_dump'+str(frame)+'.dat', 'xyz', columns = ["Particle Identifier","Particle Type","Cluster"]) # Directly access information stored in the DataTable: print(str(frame))
时间: 2023-06-05 08:06:54 浏览: 48
# 导入需要的模块
from ovito.io import import_file, export_file # 导入文件导入和导出模块
from ovito.modifiers import ClusterAnalysisModifier # 导入集团分析的修改器模块
import numpy # 导入numpy模块
# 导入lammps轨迹文件,并读取多个帧
pipeline = import_file("dump.lammpstrj", multiple_frames=True)
# 在管道中添加一个集团分析的修改器,并设置参数
pipeline.modifiers.append(ClusterAnalysisModifier(
cutoff=4,
sort_by_size=True,
compute_com=True,
compute_gyration=True
))
相关问题
[surf] nr_octaves=4 nr_scales=6 initial_step_size=1 threshold=0.1 max_points=1024 descriptor_only=True n_clusters=500我用的是Ovito图片应该怎么设置参数啊
这些参数看起来像是用于SIFT特征点检测和描述符生成的,如果你要使用Ovito进行SIFT特征点检测和描述符生成,可以在Ovito的Python脚本中使用以下代码:
```
from ovito.modifiers import SiftDescriptorModifier
modifier = SiftDescriptorModifier()
modifier.parameters.nr_octaves = 4
modifier.parameters.nr_scales = 6
modifier.parameters.initial_step_size = 1
modifier.parameters.threshold = 0.1
modifier.parameters.max_points = 1024
modifier.parameters.descriptor_only = True
modifier.parameters.n_clusters = 500
pipeline.modifiers.append(modifier)
```
其中,pipeline是你的数据处理管道,可以通过以下代码创建:
```
from ovito.io import import_file
pipeline = import_file("path/to/your/file.xyz")
```
你需要将"path/to/your/file.xyz"替换为你的图像文件路径。然后,将SiftDescriptorModifier添加到管道中,运行脚本即可。
参考下列代码,编写播放mp3的python代码。#!/usr/bin/env python # -*- coding: utf-8 -*- import pygame import os from tkinter import * root = Tk() root.title('music播放器') root.geometry('800x600') pygame.init() music_path = r'E:\music\zhousen' current_play = '3249277192.mp3' music_name = StringVar() def play(): music_name.set(current_play) pygame.mixer.music.load(os.path.join(music_path, current_play)) pygame.mixer.music.play() label1=Label(root, textvariable=music_name, font=('宋体', 14), justify='center',bg='#ADD8E6').place(relx=0, rely=0.1, relwidth=1, relheight=0.3) #place 布局 button1=Button(root, text="播放", command=play).place(relx=0, rely=0.5, relwidth=0.2, relheight=0.1) button2=Button(root, text="暂停", command=lambda: pygame.mixer.music.pause()).place(relx=0.2, rely=0.5, relwidth=0.2, relheight=0.1) button3=Button(root, text="恢复", command=lambda: pygame.mixer.music.unpause()).place(relx=0.4, rely=0.5, relwidth=0.2, relheight=0.1) button4=Button(root, text="停止", command=lambda: pygame.mixer.music.stop()).place(relx=0.6, rely=0.5, relwidth=0.2, relheight=0.1) button5=Button(root, text="重播", command=lambda: pygame.mixer.music.rewind()).place(relx=0.8, rely=0.5, relwidth=0.2, relheight=0.1) root.mainloop()
你可以使用pyglet库来播放mp3文件,以下是一个简单的示例代码:
```python
import pyglet
music_path = 'E:/music/zhousen'
current_play = '3249277192.mp3'
def play():
music = pyglet.media.load(f"{music_path}/{current_play}")
music.play()
play_button = pyglet.window.Window(width=200, height=100, caption='Play MP3')
@play_button.event
def on_draw():
play_button.clear()
pyglet.gl.glColor3f(1, 1, 1)
pyglet.graphics.draw(2, pyglet.gl.GL_LINES,
('v2i', (10, 50, 190, 50))
)
label = pyglet.text.Label(
current_play,
font_name='Times New Roman',
font_size=18,
x=play_button.width//2, y=play_button.height//2,
anchor_x='center', anchor_y='center'
)
label.draw()
@play_button.event
def on_mouse_press(x, y, button, modifiers):
if button == pyglet.window.mouse.LEFT:
play()
pyglet.app.run()
```
这个代码中,我们创建了一个Pyglet窗口来显示当前播放的歌曲,并且在窗口上添加了一个按钮,当用户点击按钮时,就会播放当前选择的mp3文件。注意,这个代码只是一个示例,你需要根据自己的需求来修改它。
相关推荐
















