对deblurgan-v2中生成器的fpn结构进行可变形卷积操作的实现,pytorch的代码
时间: 2023-06-18 13:05:04 浏览: 166
下面是deblurgan-v2中生成器的fpn结构进行可变形卷积操作的实现的PyTorch代码,其中使用了mmcv库中的DeformConv2d实现可变形卷积操作:
```python
import torch
import torch.nn as nn
import mmcv.ops as ops
class FPN(nn.Module):
def __init__(self, in_channels, out_channels):
super(FPN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.topdown2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=2, stride=2)
self.topdown3 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=2, stride=2)
self.topdown4 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=2, stride=2)
self.deform_conv1 = ops.DeformConv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.deform_conv2 = ops.DeformConv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.deform_conv3 = ops.DeformConv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
c1 = self.conv1(x[0])
c2 = self.conv2(x[1])
c3 = self.conv3(x[2])
c4 = self.conv4(x[3])
p4 = c4
p3 = self.topdown4(p4) + c3
p2 = self.topdown3(p3) + c2
p1 = self.topdown2(p2) + c1
p1 = self.deform_conv1(p1)
p2 = self.deform_conv2(p2)
p3 = self.deform_conv3(p3)
return [p1, p2, p3, p4]
```
在这个代码中,我们定义了一个名为FPN的类,该类包含四个卷积层和三个可变形卷积层。我们首先使用四个卷积层处理输入图像的不同尺度,然后使用反卷积层将这些特征图上采样到相同的尺度。接下来,我们使用可变形卷积层对特征图进行增强,以提高模型的性能。
我们使用mmcv库中的DeformConv2d实现可变形卷积操作,该库提供了一种简单的方法来实现可变形卷积。可以通过安装mmcv库来使用DeformConv2d,安装命令如下:
```
pip install mmcv-full
```
然后,我们可以使用类似于标准卷积层的方式来使用DeformConv2d。
阅读全文