逆向强化学习实例代码
时间: 2023-09-03 15:09:49 浏览: 157
以下是一个简单的逆向强化学习实例代码,使用了Python和TensorFlow库:
```python
import numpy as np
import tensorflow as tf
# 定义环境模型,这里使用一个简单的网格世界
class GridWorld:
def __init__(self):
self.grid = np.zeros((4, 4))
self.grid[3, 3] = 1 # 目标位置
self.state = (0, 0) # 初始状态
def step(self, action):
if action == 'up':
self.state = (max(self.state[0] - 1, 0), self.state[1])
elif action == 'down':
self.state = (min(self.state[0] + 1, 3), self.state[1])
elif action == 'left':
self.state = (self.state[0], max(self.state[1] - 1, 0))
elif action == 'right':
self.state = (self.state[0], min(self.state[1] + 1, 3))
if self.state == (3, 3):
reward = 1
done = True
else:
reward = 0
done = False
return self.state, reward, done
# 定义逆向强化学习算法
class IRL:
def __init__(self, expert_trajectories, num_states, num_actions, learning_rate=0.01):
self.expert_trajectories = expert_trajectories
self.num_states = num_states
self.num_actions = num_actions
self.learning_rate = learning_rate
self.weights = tf.Variable(tf.random.normal((num_states, num_actions)))
def compute_policy(self, state):
logits = tf.matmul(state, self.weights)
return tf.nn.softmax(logits)
def train(self):
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learning_rate)
for expert_trajectory in self.expert_trajectories:
states, actions = expert_trajectory
with tf.GradientTape() as tape:
state_tensor = tf.convert_to_tensor(states, dtype=tf.float32)
action_tensor = tf.one_hot(actions, depth=self.num_actions)
policy = self.compute_policy(state_tensor)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=action_tensor, logits=policy))
gradients = tape.gradient(loss, [self.weights])
optimizer.apply_gradients(zip(gradients, [self.weights]))
# 创建一个网格世界环境实例
env = GridWorld()
# 生成一些专家轨迹数据
expert_trajectories = [([env.step('right')[0] for _ in range(4)], ['right', 'right', 'right', 'down']),
([env.step('down')[0] for _ in range(4)], ['down', 'down', 'down', 'right'])]
# 创建一个逆向强化学习模型实例
irl = IRL(expert_trajectories, num_states=16, num_actions=4)
# 训练逆向强化学习模型
irl.train()
```
这个例子展示了一个简单的网格世界环境,使用逆向强化学习算法从专家轨迹中学习一个策略。模型通过迭代优化权重来逼近专家的行为特征。请注意,这只是一个简单的示例,实际中可能需要更复杂的环境和更强大的模型来解决实际问题。
阅读全文