双向Transformer编码器
时间: 2023-12-13 16:31:32 浏览: 155
bert_BERT_transformer_river9ew_arrange8iy_bert全称_
双向Transformer编码器是指在Transformer架构中,编码器可以同时考虑输入序列中前后两个方向的信息。这是通过在编码器中使用自注意力机制实现的,自注意力机制可以让编码器在处理每个输入时,同时考虑输入序列中其他位置的信息。
下面是一个双向Transformer编码器的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super(TransformerEncoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.embedding = nn.Embedding(input_size, hidden_size)
self.pos_embedding = nn.Embedding(1000, hidden_size)
self.layers = nn.ModuleList([TransformerEncoderLayer(hidden_size, num_heads, dropout) for _ in range(num_layers)])
self.dropout_layer = nn.Dropout(dropout)
def forward(self, input_seq):
seq_len, batch_size = input_seq.size()
pos_seq = torch.arange(seq_len, device=input_seq.device).unsqueeze(1).repeat(1, batch_size)
input_embedded = self.embedding(input_seq) + self.pos_embedding(pos_seq)
output = input_embedded
for layer in self.layers:
output = layer(output)
return output
```
阅读全文