dataframe.iloc.values
时间: 2023-09-24 12:13:46 浏览: 106
The attribute `values` in the `iloc` property of a Pandas DataFrame returns a NumPy array representation of the DataFrame's values.
For example, suppose we have a DataFrame `df`:
```
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
```
We can access the values of the DataFrame using the `iloc` property:
```
values = df.iloc.values
```
This will return a NumPy array of the same shape as the DataFrame:
```
array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
```
Note that the `values` attribute returns a copy of the data, not a view. Therefore, any modifications made to the NumPy array will not affect the original DataFrame.
相关问题
from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() df0=min_max_scaler.fit_transform(df1) df = pd.DataFrame(df0, columns=df1.columns) x=df.iloc[:,:-1] y=df.iloc[:,-1] #划分训练集测试集 cut=300#取最后cut=30天为测试集 x_train, x_test=x.iloc[:-cut],x.iloc[-cut:]#列表的切片操作,X.iloc[0:2400,0:7]即为1-2400行,1-7列 y_train, y_test=y.iloc[:-cut],y.iloc[-cut:] x_train, x_test=x_train.values, x_test.values y_train, y_test=y_train.values, y_test.values
这段代码使用了sklearn库中的preprocessing模块,导入了MinMaxScaler类。然后,对df1数据进行了归一化处理,将处理后的结果存储在df0中。接着,将df0转换成了DataFrame格式,并将列名设置为df1的列名。最后,将df中的特征数据和标签数据分别存储在x和y中。
x = df.iloc[0].values y = df.iloc[1].values
这是一个IT类问题,这段代码是将Pandas DataFrame中第一行和第二行的数据分别赋值给变量x和y。其中"df"是一个DataFrame对象,".iloc"是DataFrame中的一种索引方式,"0"和"1"代表了DataFrame中的第一行和第二行。".values"则是将行数据转换为一个NumPy数组。
阅读全文