设计实现一个基于哈夫曼算法的压缩软件,统计文件中各字符出现的频次,设计哈夫曼编码,用c语言写出完整代码并写出详细注释

时间: 2024-05-08 07:21:06 浏览: 165
PDF

huffman基于静态哈夫曼编码的文件压缩

star5星 · 资源好评率100%
首先,我们需要了解哈夫曼编码的基本原理。哈夫曼编码是一种可变长度编码,它利用出现频率较高的字符用较短的编码,出现频率较低的字符用较长的编码,从而达到压缩数据的目的。 实现哈夫曼编码,我们需要以下几个步骤: 1. 统计文件中各字符出现的频次 2. 根据频次构建哈夫曼树 3. 从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表 4. 使用哈夫曼编码表对文件进行编码 5. 将编码后的文件进行解码,得到原始文件 下面是基于哈夫曼算法的压缩软件的代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 #define MAX_FILENAME_SIZE 100 // 结构体:哈夫曼树 struct HuffmanTree { char data; // 节点存储的字符数据 int freq; // 节点出现的频次 struct HuffmanTree *left; // 左子节点 struct HuffmanTree *right; // 右子节点 }; // 结构体:哈夫曼编码表 struct HuffmanTable { char data; // 字符数据 char code[MAX_TREE_HT]; // 哈夫曼编码 int len; // 编码长度 }; // 函数:统计文件中各字符出现的频次 void getFrequency(FILE *fp, int frequency[]) { char c; while ((c = fgetc(fp)) != EOF) { frequency[c]++; } } // 函数:构建哈夫曼树 struct HuffmanTree* buildHuffmanTree(int frequency[]) { int i; struct HuffmanTree *node, *left, *right; struct HuffmanTree *queue[MAX_TREE_HT], *temp; // 初始化队列 for (i = 0; i < MAX_TREE_HT; i++) { queue[i] = NULL; } // 将所有出现频次的字符作为叶子节点,加入队列中 for (i = 0; i < 256; i++) { if (frequency[i] > 0) { node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = i; node->freq = frequency[i]; node->left = NULL; node->right = NULL; queue[i] = node; } } // 构建哈夫曼树 while (1) { // 从队列中找出频次最小的两个节点 left = NULL; right = NULL; for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { if (left == NULL || queue[i]->freq < left->freq) { left = queue[i]; } if (right == NULL || queue[i]->freq < right->freq) { right = queue[i]; } } } // 将找出的两个节点合并成一个新的节点 node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = 0; node->freq = left->freq + right->freq; node->left = left; node->right = right; // 将新节点加入队列 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] == NULL) { queue[i] = node; break; } } // 如果队列中只剩下一个节点,说明哈夫曼树构建完成 if (i == 1) { break; } } // 返回根节点 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { return queue[i]; } } return NULL; } // 函数:从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表 void buildHuffmanTable(struct HuffmanTree *node, struct HuffmanTable table[], int index, char code[], int len) { if (node->left == NULL && node->right == NULL) { table[index].data = node->data; strcpy(table[index].code, code); table[index].len = len; return; } int i; char leftCode[MAX_TREE_HT], rightCode[MAX_TREE_HT]; strcpy(leftCode, code); strcpy(rightCode, code); leftCode[len] = '0'; rightCode[len] = '1'; buildHuffmanTable(node->left, table, 2 * index + 1, leftCode, len + 1); buildHuffmanTable(node->right, table, 2 * index + 2, rightCode, len + 1); } // 函数:使用哈夫曼编码表对文件进行编码 void encodeFile(FILE *fp, FILE *fout, struct HuffmanTable table[]) { char c; int i, j; while ((c = fgetc(fp)) != EOF) { for (i = 0; i < 256; i++) { if (table[i].data == c) { for (j = 0; j < table[i].len; j++) { fputc(table[i].code[j], fout); } break; } } } } // 函数:将编码后的文件进行解码,得到原始文件 void decodeFile(FILE *fp, FILE *fout, struct HuffmanTree *root) { char c; struct HuffmanTree *node = root; while ((c = fgetc(fp)) != EOF) { if (c == '0') { node = node->left; } else { node = node->right; } if (node->left == NULL && node->right == NULL) { fputc(node->data, fout); node = root; } } } int main() { char filename[MAX_FILENAME_SIZE]; printf("请输入要压缩的文件名:"); scanf("%s", filename); FILE *fp = fopen(filename, "r"); if (fp == NULL) { printf("文件打开失败!"); return 1; } int frequency[256] = {0}; getFrequency(fp, frequency); fclose(fp); struct HuffmanTree *root = buildHuffmanTree(frequency); struct HuffmanTable table[256]; buildHuffmanTable(root, table, 0, "", 0); char outFilename[MAX_FILENAME_SIZE]; sprintf(outFilename, "%s.huf", filename); FILE *fout = fopen(outFilename, "w"); fp = fopen(filename, "r"); encodeFile(fp, fout, table); fclose(fp); fclose(fout); fp = fopen(outFilename, "r"); fout = fopen("decode.txt", "w"); decodeFile(fp, fout, root); fclose(fp); fclose(fout); return 0; } ``` 注释详解: 1. 宏定义 ```c #define MAX_TREE_HT 100 #define MAX_FILENAME_SIZE 100 ``` 定义了最大哈夫曼树高度和文件名的最大长度。 2. 哈夫曼树结构体 ```c struct HuffmanTree { char data; // 节点存储的字符数据 int freq; // 节点出现的频次 struct HuffmanTree *left; // 左子节点 struct HuffmanTree *right; // 右子节点 }; ``` 定义了哈夫曼树节点的数据结构。 3. 哈夫曼编码表结构体 ```c struct HuffmanTable { char data; // 字符数据 char code[MAX_TREE_HT]; // 哈夫曼编码 int len; // 编码长度 }; ``` 定义了哈夫曼编码表的数据结构。 4. 统计文件中各字符出现的频次 ```c void getFrequency(FILE *fp, int frequency[]) { char c; while ((c = fgetc(fp)) != EOF) { frequency[c]++; } } ``` 该函数接受一个文件指针和一个整型数组,统计文件中各字符出现的频次,将结果保存在整型数组中。 5. 构建哈夫曼树 ```c struct HuffmanTree* buildHuffmanTree(int frequency[]) { int i; struct HuffmanTree *node, *left, *right; struct HuffmanTree *queue[MAX_TREE_HT], *temp; // 初始化队列 for (i = 0; i < MAX_TREE_HT; i++) { queue[i] = NULL; } // 将所有出现频次的字符作为叶子节点,加入队列中 for (i = 0; i < 256; i++) { if (frequency[i] > 0) { node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = i; node->freq = frequency[i]; node->left = NULL; node->right = NULL; queue[i] = node; } } // 构建哈夫曼树 while (1) { // 从队列中找出频次最小的两个节点 left = NULL; right = NULL; for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { if (left == NULL || queue[i]->freq < left->freq) { left = queue[i]; } if (right == NULL || queue[i]->freq < right->freq) { right = queue[i]; } } } // 将找出的两个节点合并成一个新的节点 node = (struct HuffmanTree*) malloc(sizeof(struct HuffmanTree)); node->data = 0; node->freq = left->freq + right->freq; node->left = left; node->right = right; // 将新节点加入队列 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] == NULL) { queue[i] = node; break; } } // 如果队列中只剩下一个节点,说明哈夫曼树构建完成 if (i == 1) { break; } } // 返回根节点 for (i = 0; i < MAX_TREE_HT; i++) { if (queue[i] != NULL) { return queue[i]; } } return NULL; } ``` 该函数接受一个整型数组,构建哈夫曼树,并返回根节点。 6. 构建哈夫曼编码表 ```c void buildHuffmanTable(struct HuffmanTree *node, struct HuffmanTable table[], int index, char code[], int len) { if (node->left == NULL && node->right == NULL) { table[index].data = node->data; strcpy(table[index].code, code); table[index].len = len; return; } int i; char leftCode[MAX_TREE_HT], rightCode[MAX_TREE_HT]; strcpy(leftCode, code); strcpy(rightCode, code); leftCode[len] = '0'; rightCode[len] = '1'; buildHuffmanTable(node->left, table, 2 * index + 1, leftCode, len + 1); buildHuffmanTable(node->right, table, 2 * index + 2, rightCode, len + 1); } ``` 该函数接受一个哈夫曼树节点、一个哈夫曼编码表、一个索引、一个编码字符串和一个编码长度,从根节点出发,向左走为0,向右走为1,构建哈夫曼编码表。 7. 使用哈夫曼编码表对文件进行编码 ```c void encodeFile(FILE *fp, FILE *fout, struct HuffmanTable table[]) { char c; int i, j; while ((c = fgetc(fp)) != EOF) { for (i = 0; i < 256; i++) { if (table[i].data == c) { for (j = 0; j < table[i].len; j++) { fputc(table[i].code[j], fout); } break; } } } } ``` 该函数接受一个文件指针、一个输出文件指针和一个哈夫曼编码表,使用哈夫曼编码表对文件进行编码,并将结果输出到输出文件中。 8. 将编码后的文件进行解码,得到原始文件 ```c void decodeFile(FILE *fp, FILE *fout, struct HuffmanTree *root) { char c; struct HuffmanTree *node = root; while ((c = fgetc(fp)) != EOF) { if (c == '0') { node = node->left; } else { node = node->right; } if (node->left == NULL && node->right == NULL) { fputc(node->data, fout); node = root; } } } ``` 该函数接受一个文件指针、一个输出文件指针和一个哈夫曼树的根节点,将编码后的文件进行解码,得到原始文件,并将结果输出到输出文件中。 9. 主函数 ```c int main() { char filename[MAX_FILENAME_SIZE]; printf("请输入要压缩的文件名:"); scanf("%s", filename); FILE *fp = fopen(filename, "r"); if (fp == NULL) { printf("文件打开失败!"); return 1; } int frequency[256] = {0}; getFrequency(fp, frequency); fclose(fp); struct HuffmanTree *root = buildHuffmanTree(frequency); struct HuffmanTable table[256]; buildHuffmanTable(root, table, 0, "", 0); char outFilename[MAX_FILENAME_SIZE]; sprintf(outFilename, "%s.huf", filename); FILE *fout = fopen(outFilename, "w"); fp = fopen(filename, "r"); encodeFile(fp, fout, table); fclose(fp); fclose(fout); fp = fopen(outFilename, "r"); fout = fopen("decode.txt", "w"); decodeFile(fp, fout, root); fclose(fp); fclose(fout); return 0; } ``` 该函数实现了整个压缩过程的控制流程。首先读入要压缩的文件名,然后调用函数统计文件中各字符出现的频次,构建哈夫曼树,并根据哈夫曼树构建哈夫曼编码表。接下来,为压缩文件起一个新的文件名,打开该文件并以写入模式打开输出文件。使用哈夫曼编码表对文件进行编码,并将结果输出到输出文件中。最后,打开压缩后的文件,以读取模式打开解压文件,并使用哈夫曼树将编码后的文件进行解码,得到原始文件,并将结果输出到解压文件中。
阅读全文

相关推荐

最新推荐

recommend-type

哈夫曼编码-译码器课程设计报告.docx

在本次计算机算法课程设计中,学生团队构建了一个基于哈夫曼算法的编码和译码系统。该系统允许用户输入字符集及其对应的权值,然后生成哈夫曼编码并进行解码。系统采用两种存储结构——动态和静态,以实现哈夫曼树的...
recommend-type

哈夫曼编码(贪心算法)报告.doc

哈夫曼编码是一种基于贪心策略的高效数据文件压缩编码方法,其核心在于通过构建最优前缀码来实现编码效率的最大化。在本实验报告中,我们将深入理解哈夫曼编码的工作原理、设计思想以及其实现过程。 1. 问题描述: ...
recommend-type

C语言中压缩字符串的简单算法小结

最后,哈夫曼编码是一种基于字符频率的压缩方法,特别适用于字符出现频率不均匀的情况。它通过构建最优二叉树来为每个字符分配唯一的二进制编码。对于只有0-9这10个字符组成的字符串,可以构建哈夫曼树并为每个字符...
recommend-type

C语言实现哈夫曼树的构建

哈夫曼树的优点在于它能够根据字符出现的频率来动态地调整编码长度,频率高的字符使用较短的编码,频率低的字符使用较长的编码,这样整个编码的平均长度是最短的,从而实现数据的高效压缩。 哈夫曼树的应用非常广泛...
recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

本项目要求设计一个基于哈夫曼编码的编译码系统,包括初始化、编码、解码、打印代码文件和打印哈夫曼树等功能,实现对字符集的高效处理。 1. 初始化阶段(Initialization): 在这一阶段,系统需从用户输入中获取...
recommend-type

GitHub图片浏览插件:直观展示代码中的图像

资源摘要信息: "ImagesOnGitHub-crx插件" 知识点概述: 1. 插件功能与用途 2. 插件使用环境与限制 3. 插件的工作原理 4. 插件的用户交互设计 5. 插件的图标和版权问题 6. 插件的兼容性 1. 插件功能与用途 插件"ImagesOnGitHub-crx"设计用于增强GitHub这一开源代码托管平台的用户体验。在GitHub上,用户可以浏览众多的代码仓库和项目,但GitHub默认情况下在浏览代码仓库时,并不直接显示图像文件内容,而是提供一个“查看原始文件”的链接。这使得用户体验受到一定限制,特别是对于那些希望直接在网页上预览图像的用户来说不够方便。该插件正是为了解决这一问题,允许用户在浏览GitHub上的图像文件时,无需点击链接即可直接在当前页面查看图像,从而提供更为流畅和直观的浏览体验。 2. 插件使用环境与限制 该插件是专为使用GitHub的用户提供便利的。它能够在GitHub的代码仓库页面上发挥作用,当用户访问的是图像文件页面时。值得注意的是,该插件目前只支持".png"格式的图像文件,对于其他格式如.jpg、.gif等并不支持。用户在使用前需了解这一限制,以免在期望查看其他格式文件时遇到不便。 3. 插件的工作原理 "ImagesOnGitHub-crx"插件的工作原理主要依赖于浏览器的扩展机制。插件安装后,会监控用户在GitHub上的操作。当用户访问到图像文件对应的页面时,插件会通过JavaScript检测页面中的图像文件类型,并判断是否为支持的.png格式。如果是,它会在浏览器地址栏的图标位置上显示一个小octocat图标,用户点击这个图标即可触发插件功能,直接在当前页面上查看到图像。这一功能的实现,使得用户无需离开当前页面即可预览图像内容。 4. 插件的用户交互设计 插件的用户交互设计体现了用户体验的重要性。插件通过在地址栏中增加一个小octocat图标来提示用户当前页面有图像文件可用,这是一种直观的视觉提示。用户通过简单的点击操作即可触发查看图像的功能,流程简单直观,减少了用户的学习成本和操作步骤。 5. 插件的图标和版权问题 由于插件设计者在制作图标方面经验不足,因此暂时借用了GitHub的标志作为插件图标。插件的作者明确表示,如果存在任何错误或版权问题,将会进行更改。这体现了开发者对知识产权尊重的态度,同时也提醒了其他开发者在使用或设计相关图标时应当考虑到版权法律的约束,避免侵犯他人的知识产权。 6. 插件的兼容性 插件的兼容性是评估其可用性的重要标准之一。由于插件是为Chrome浏览器的用户所设计,因此它使用了Chrome扩展程序的标准格式,即.crx文件。用户需要通过浏览器的扩展程序管理界面进行安装。尽管目前插件仅支持.png图像格式,但对于希望在GitHub上浏览.png图像文件的用户来说,已经提供了非常实用的功能。未来,若开发者计划拓展插件支持的文件格式或适用于其他浏览器,则需要考虑到对现有代码的扩展和兼容性测试。 总结: "ImagesOnGitHub-crx"插件通过创新的用户体验设计,解决了GitHub在浏览图像文件时的一些局限性,使得图像浏览更加直观和便捷。尽管目前该插件存在一些限制,如仅支持.png格式和仅在Chrome浏览器中可用,但它为用户和开发者提供了良好的思路和实践。对于希望提高效率和增强功能的用户来说,这类工具扩展了GitHub的实用性,是开发人员工具箱中的一个有益补充。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【OPPO手机故障诊断专家】:工程指令快速定位与解决

![【OPPO手机故障诊断专家】:工程指令快速定位与解决](https://www.consumerelectronicstestdevelopment.com/media/2hlomnxy/oppo.jpg?anchor=center&mode=crop&width=1002&height=564&bgcolor=White&rnd=132773815380200000) # 摘要 本文综述了OPPO手机故障诊断的技术细节,涵盖了工程指令的基础理论、实践应用、高级技巧以及未来发展方向。首先介绍了工程指令的定义、分类、执行环境及其与手机系统交互的重要性。随后,深入探讨了工程指令在初步故障诊断
recommend-type

求[100,900]之间相差为12的素数对(注:要求素数对的两个素数均在该范围内)的个数

求解 [100, 900] 范围内相差为 12 的素数对,首先我们需要确定哪些数在这个区间内是素数。然后筛选出它们成对出现且差值为 12 的情况。 1. 确定素数范围内的素数:我们可以编写一个简单的程序来检查每个数字是否为素数,如果数字大于 1,并且除 2 到其平方根之间的所有整数都不能整除它,那么这个数字就是素数。 2. 遍历并寻找符合条件的素数对:从较大的素数开始向下遍历,找到的第一个素数作为“较大”素数,然后查看比它小 12 的下一个数,如果这个数也是素数,则找到了一对符合条件的素数。 3. 统计素数对的数量:统计在给定范围内找到的这种差距为 12 的素数对的数量。 由于计算素数
recommend-type

Android IPTV项目:直播频道的实时流媒体实现

资源摘要信息:"IPTV:直播IPTV的Android项目是一个基于Android平台的实时流式传输应用。该项目允许用户从M3U8或M3U格式的链接或文件中获取频道信息,并将这些频道以网格或列表的形式展示。用户可以在应用内选择并播放指定的频道。该项目的频道列表是从一个预设的列表中加载的,并且通过解析M3U或M3U8格式的文件来显示频道信息。开发者还计划未来更新中加入Exo播放器以及电子节目单功能,以增强用户体验。此项目使用了多种技术栈,包括Java、Kotlin以及Kotlin Android扩展。" 知识点详细说明: 1. IPTV技术: IPTV(Internet Protocol Television)即通过互联网协议提供的电视服务。它与传统的模拟或数字电视信号传输方式不同,IPTV通过互联网将电视内容以数据包的形式发送给用户。这种服务使得用户可以按需观看电视节目,包括直播频道、视频点播(VOD)、时移电视(Time-shifted TV)等。 2. Android开发: 该项目是针对Android平台的应用程序开发,涉及到使用Android SDK(软件开发工具包)进行应用设计和功能实现。Android应用开发通常使用Java或Kotlin语言,而本项目还特别使用了Kotlin Android扩展(Kotlin-Android)来优化开发流程。 3. 实时流式传输: 实时流式传输是指媒体内容以连续的流形式进行传输的技术。在IPTV应用中,实时流式传输保证了用户能够及时获得频道内容。该项目可能使用了HTTP、RTSP或其他流媒体协议来实现视频流的实时传输。 4. M3U/M3U8文件格式: M3U(Moving Picture Experts Group Audio Layer 3 Uniform Resource Locator)是一种常用于保存播放列表的文件格式。M3U8则是M3U格式的扩展版本,支持UTF-8编码,常用于苹果设备。在本项目中,M3U/M3U8文件被用来存储IPTV频道信息,如频道名称、视频流URL等。 5. Exo播放器: ExoPlayer是谷歌官方提供的一个开源视频播放器,专为Android优化。它支持多种特性,如自定义字幕、HDR视频播放、无缝直播等。ExoPlayer通常用于处理IPTV应用中的视频流媒体播放需求。 6. 电子节目单(EPG): 电子节目单是IPTV应用中一项重要功能,它为用户提供频道的节目指南,包括当前播放的节目以及未来节目的安排。电子节目单一般以网格或列表形式展示,方便用户浏览和搜索节目信息。 7. 开源贡献文化: 该项目提到了欢迎贡献者,表明这是一个开源项目。在开源文化中,开发者社区鼓励用户、开发者贡献代码来改进项目,这是一个共享知识、共同进步的过程。参与者通过贡献代码、报告问题或提供文档帮助等方式参与项目。 8. Kotlin编程语言: Kotlin是一种运行在Java虚拟机上的静态类型编程语言,它与Java完全兼容并可以无缝集成Java代码。Kotlin以其简洁、安全和富有表现力的特点被越来越多的Android开发者采用。在本项目中,使用Kotlin可以简化代码结构,提高开发效率和应用性能。 总结而言,本项目是一个面向Android平台的实时流媒体IPTV应用开发项目,它整合了实时流式传输、M3U/M3U8文件解析、Exo播放器使用、电子节目单功能等关键技术点,并在开源社区中寻求贡献者的参与。通过本项目,开发者可以深入了解如何在Android平台上实现IPTV服务,并学习到使用Kotlin和Java等编程语言进行Android应用开发的相关知识。