设计实现一个基于哈夫曼算法的压缩软件,统计文件中各字符出现的频次,设计哈夫曼编码,用c语言写出并写出详细注释,要写出完整代码

时间: 2024-05-16 18:12:58 浏览: 16
好的,以下是基于哈夫曼算法的压缩软件的实现。 ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 1000 // 定义哈夫曼节点 struct MinHeapNode { char data; // 数据 unsigned freq; // 频率 struct MinHeapNode *left, *right; // 左右子节点 }; // 定义哈夫曼树 struct MinHeap { unsigned size; // 堆的大小 unsigned capacity; // 堆的容量 struct MinHeapNode **array; // 指向哈夫曼节点的指针数组 }; // 创建一个哈夫曼节点 struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* node = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode)); node->left = node->right = NULL; node->data = data; node->freq = freq; return node; } // 创建一个最小堆 struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } // 交换两个哈夫曼节点 void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } // 调整一个最小堆 void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) { smallest = left; } if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) { smallest = right; } if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } // 判断堆是否只有一个节点 int isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } // 取出堆中的最小节点 struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } // 插入一个新的节点到堆中 void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } // 建立哈夫曼树 struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) { insertMinHeap(minHeap, newNode(data[i], freq[i])); } while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } // 用于打印哈夫曼编码 void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (!root->left && !root->right) { printf("%c: ", root->data); for (int i = 0; i < top; ++i) { printf("%d", arr[i]); } printf("\n"); } } // 压缩函数 void compressFile(char* fileName) { FILE* fp = fopen(fileName, "rb"); if (fp == NULL) { printf("File not found!\n"); return; } fseek(fp, 0, SEEK_END); int fileSize = ftell(fp); rewind(fp); // 统计文件中各字符出现的频次 int freq[256] = {0}; char c; for (int i = 0; i < fileSize; ++i) { fread(&c, sizeof(char), 1, fp); freq[c]++; } // 创建哈夫曼树 char data[256]; int j = 0; for (int i = 0; i < 256; ++i) { if (freq[i] != 0) { data[j++] = (char)i; } } struct MinHeapNode* root = buildHuffmanTree(data, freq, j); // 打印哈夫曼编码 int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); fclose(fp); } // 主函数 int main(int argc, char const *argv[]) { if (argc != 2) { printf("Usage: %s <file_name>\n", argv[0]); return 1; } compressFile((char*)argv[1]); return 0; } ``` 以上代码实现了哈夫曼树的构建以及哈夫曼编码的生成,但是并没有实现具体的压缩和解压缩功能。如果需要实现完整的压缩软件,还需要编写相应的压缩和解压缩算法。

相关推荐

最新推荐

recommend-type

哈夫曼编码-译码器课程设计报告.docx

设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 基本要求: (1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) (2)分别采用动态和静态存储...
recommend-type

C语言中压缩字符串的简单算法小结

最后,哈夫曼编码是一种基于字符频率的压缩方法,特别适用于字符出现频率不均匀的情况。它通过构建最优二叉树来为每个字符分配唯一的二进制编码。对于只有0-9这10个字符组成的字符串,可以构建哈夫曼树并为每个字符...
recommend-type

哈夫曼编码(贪心算法)报告.doc

算法设计与分析实验报告,附已通过源码,供学习参考,共勉♪ 目录摘要如下: 1.问题描述 2.实验目的 3.实验原理 4.实验设计 (包括输入格式、算法、输出格式) 5.实验结果与分析 (除了截图外,实验结果还用...
recommend-type

C语言实现哈夫曼树的构建

哈夫曼树的构建与C语言实现 哈夫曼树是一种特殊的二叉树,它的权值越小,越靠近根节点。哈夫曼树的构建是数据压缩和编码的重要组件。下面是哈夫曼树的构建与C语言实现的相关知识点: 一、哈夫曼树的定义 哈夫曼...
recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

写一个哈夫曼树编码译码系统。 2.基本要求 一个完整的系统应具有以下功能: I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。 E:编码...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。