用python写一个alpha-beta剪枝算法

时间: 2023-06-09 11:06:35 浏览: 58
好的,我会开始回答你的问题。以下是用 Python 编写 Alpha-Beta 剪枝算法的基本步骤: 1. 定义游戏状态表示方式:你需要定义你的游戏状态是如何表示的,通常是通过一个多维数组或一个对象来表示棋盘状态等。 2. 编写估值函数:在实现 Alpha-Beta 剪枝算法之前,你需要定义一个估值函数来评估当前状态的好坏程度。 3. 实现 Alpha-Beta 剪枝算法:你需要编写一个函数来实现 Alpha-Beta 剪枝算法。该函数应该接收一个游戏状态和深度作为参数,并返回一个估值(或者是一个元组,包含估值和最佳下一步)。 4. 调用 Alpha-Beta 剪枝算法函数:在主函数中,你需要调用 Alpha-Beta 剪枝算法函数,并将当前游戏状态和深度作为参数传递进去。 5. 执行步骤 4 找到最优解:最后,你需要根据 Alpha-Beta 剪枝算法的返回值,找到最优解并执行。 下面是一个伪代码实现: ``` def alphabeta(state, depth, alpha, beta, is_max_player): if depth == 0 or state is terminal_state: return evaluate(state) if is_max_player: value = -infinity for child in get_children(state): value = max(value, alphabeta(child, depth - 1, alpha, beta, False)) alpha = max(alpha, value) if alpha >= beta: break # beta cut-off return value else: value = infinity for child in get_children(state): value = min(value, alphabeta(child, depth - 1, alpha, beta, True)) beta = min(beta, value) if alpha >= beta: break # alpha cut-off return value ``` 你需要将其中的 `evaluate` 函数替换为你的估值函数,`get_children` 函数替换为获取下一步所有可能状态的函数。此外,你还需要将 `infinity` 替换为一个足够大的数字来表示正无穷大,将 `-infinity` 替换为一个足够小的数字来表示负无穷大。 希望这能帮助你实现一个简单的 Alpha-Beta 剪枝算法!

相关推荐

好的,下面是代码实现: python # 定义下棋的函数 def play_chess(board, player, move): row, col = move board[row][col] = player return board # 定义估值函数 def evaluate_board(board): # 这里只是简单的估值,可根据实际情况进行调整 player_one = 0 player_two = 0 for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 1: player_one += 1 elif board[i][j] == 2: player_two += 1 return player_one - player_two # 定义alpha-beta剪枝算法 def alpha_beta_pruning(board, player, depth, alpha, beta): # 判断是否到达搜索深度或终局,到达则返回当前局面的估值 if depth == 0 or is_game_over(board): return evaluate_board(board) # 判断当前局面下哪些位置可以落子 moves = get_possible_moves(board, player) # 将可行落子位置按照估值从高到低排序 moves = sorted(moves, key=lambda x: evaluate_board(play_chess(board, player, x)), reverse=True) # 如果当前玩家是自己,则进行max节点的搜索 if player == MY_PLAYER: for move in moves: new_board = play_chess(board, player, move) alpha = max(alpha, alpha_beta_pruning(new_board, get_opponent(player), depth-1, alpha, beta)) if beta <= alpha: break return alpha # 如果当前玩家是对手,则进行min节点的搜索 else: for move in moves: new_board = play_chess(board, player, move) beta = min(beta, alpha_beta_pruning(new_board, get_opponent(player), depth-1, alpha, beta)) if beta <= alpha: break return beta # 定义获取对手的函数 def get_opponent(player): if player == 1: return 2 else: return 1 # 定义获取可行落子位置的函数 def get_possible_moves(board, player): moves = [] for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 0: if is_valid_move(board, player, (i, j)): moves.append((i, j)) return moves # 定义判断是否可以落子的函数 def is_valid_move(board, player, move): row, col = move # 判断该位置是否为空 if board[row][col] != 0: return False # 判断左、右、上、下、左上、右下、右上、左下八个方向是否可以翻子 directions = [(0, 1), (0, -1), (1, 0), (-1, 0), (-1, -1), (1, 1), (1, -1), (-1, 1)] result = False for direction in directions: r, c = row + direction[0], col + direction[1] temp = False while r >= 0 and r < len(board) and c >= 0 and c < len(board[0]) and board[r][c] == get_opponent(player): r += direction[0] c += direction[1] temp = True if r >= 0 and r < len(board) and c >= 0 and c < len(board[0]) and board[r][c] == player and temp: result = True return result # 定义判断游戏是否结束的函数 def is_game_over(board): for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 0: return False return True # 定义下棋的函数 def make_move(board, player, depth): # 判断当前玩家可以落子的位置 moves = get_possible_moves(board, player) if len(moves) == 0: return None # 否则进行搜索 moves = sorted(moves, key=lambda x: alpha_beta_pruning(play_chess(board, player, x), get_opponent(player), depth-1, -1000000, 1000000), reverse=True) return moves[0] 这是一个比较简单的实现,如果要进一步优化,可以考虑加入置换表、启发式搜索等。
以下是alpha-beta剪枝算法的Python代码示例: python # 定义alpha-beta剪枝算法 def alpha_beta_search(state): # 定义alpha和beta的初始值 alpha = float('-inf') beta = float('inf') # 调用递归函数进行搜索 return max_value(state, alpha, beta) # 定义max_value函数 def max_value(state, alpha, beta): # 如果达到终止状态,则返回其效用值 if state.is_terminal(): return state.utility() # 定义v的初始值 v = float('-inf') # 遍历所有可能的动作 for action in state.actions(): # 计算该动作的效用值 child_state = state.result(action) # 调用min_value函数进行搜索 min_val = min_value(child_state, alpha, beta) # 更新v和alpha的值 v = max(v, min_val) alpha = max(alpha, v) # 如果beta小于等于alpha,则进行剪枝 if beta <= alpha: break return v # 定义min_value函数 def min_value(state, alpha, beta): # 如果达到终止状态,则返回其效用值 if state.is_terminal(): return state.utility() # 定义v的初始值 v = float('inf') # 遍历所有可能的动作 for action in state.actions(): # 计算该动作的效用值 child_state = state.result(action) # 调用max_value函数进行搜索 max_val = max_value(child_state, alpha, beta) # 更新v和beta的值 v = min(v, max_val) beta = min(beta, v) # 如果beta小于等于alpha,则进行剪枝 if beta <= alpha: break return v 注意,在实际应用中,alpha-beta剪枝算法的实现可能会有所不同,具体实现方式可能会根据具体问题进行调整和优化。
好的,我可以为您提供一个基于 Python 的五子棋小游戏实现,使用了 α-β剪枝算法来实现电脑的 AI 策略。 首先,为了实现五子棋,我们需要一个棋盘,可以使用二维数组来表示: python board = [[0 for i in range(15)] for j in range(15)] 其中,0 表示该位置为空,1 表示该位置为黑子,2 表示该位置为白子。 接着,我们需要实现落子函数,来让玩家和电脑下棋: python def move(board, row, col, player): if board[row][col] != 0: return False board[row][col] = player return True 其中,player 参数表示玩家或电脑,1 表示玩家,2 表示电脑。 接下来,我们需要实现电脑的 AI 策略,使用 α-β剪枝算法来优化搜索: python def alphabeta(board, depth, alpha, beta, player): if depth == 0: return evaluate(board, player) if player == 2: best_score = -999999 for row in range(15): for col in range(15): if board[row][col] == 0: board[row][col] = player score = alphabeta(board, depth - 1, alpha, beta, 1) board[row][col] = 0 best_score = max(best_score, score) alpha = max(alpha, score) if beta <= alpha: break return best_score else: best_score = 999999 for row in range(15): for col in range(15): if board[row][col] == 0: board[row][col] = player score = alphabeta(board, depth - 1, alpha, beta, 2) board[row][col] = 0 best_score = min(best_score, score) beta = min(beta, score) if beta <= alpha: break return best_score 其中,depth 参数表示搜索的深度,alpha、beta 参数分别表示 α、β 值。 最后,我们需要实现评估函数,来评估当前棋盘的得分: python def evaluate(board, player): score = 0 for row in range(15): for col in range(15): if board[row][col] == player: score += 1 return score 最后,我们可以将上述函数整合到一个完整的程序中,来实现五子棋小游戏: python import random board = [[0 for i in range(15)] for j in range(15)] def move(board, row, col, player): if board[row][col] != 0: return False board[row][col] = player return True def alphabeta(board, depth, alpha, beta, player): if depth == 0: return evaluate(board, player) if player == 2: best_score = -999999 for row in range(15): for col in range(15): if board[row][col] == 0: board[row][col] = player score = alphabeta(board, depth - 1, alpha, beta, 1) board[row][col] = 0 best_score = max(best_score, score) alpha = max(alpha, score) if beta <= alpha: break return best_score else: best_score = 999999 for row in range(15): for col in range(15): if board[row][col] == 0: board[row][col] = player score = alphabeta(board, depth - 1, alpha, beta, 2) board[row][col] = 0 best_score = min(best_score, score) beta = min(beta, score) if beta <= alpha: break return best_score def evaluate(board, player): score = 0 for row in range(15): for col in range(15): if board[row][col] == player: score += 1 return score def play(): while True: print("请输入您要下棋的位置,用逗号分隔行列,如 1,1 表示第一行第一列:") row, col = map(int, input().split(",")) if move(board, row - 1, col - 1, 1): print("您下了一步棋,当前棋盘:") for row in board: print(row) if evaluate(board, 1) >= 5: print("您赢了!") break print("电脑正在思考,请稍等...") best_score = -999999 best_row = -1 best_col = -1 for row in range(15): for col in range(15): if board[row][col] == 0: board[row][col] = 2 score = alphabeta(board, 3, -999999, 999999, 1) board[row][col] = 0 if score > best_score: best_score = score best_row = row best_col = col move(board, best_row, best_col, 2) print("电脑下了一步棋,当前棋盘:") for row in board: print(row) if evaluate(board, 2) >= 5: print("电脑赢了!") break if __name__ == "__main__": play() 在上述程序中,我们使用了 play() 函数来启动五子棋游戏,玩家先手,电脑后手,电脑使用 α-β剪枝算法来实现 AI 策略。
以下是使用Alpha-Beta剪枝算法实现井字棋的示例代码: python # 定义玩家和电脑的标记 player = "X" computer = "O" # 初始化棋盘 board = [" " for i in range(9)] # 打印棋盘 def print_board(): row1 = "|".join(board[0:3]) row2 = "|".join(board[3:6]) row3 = "|".join(board[6:9]) print(row1) print("-" * 5) print(row2) print("-" * 5) print(row3) # 判断是否有空位 def has_space(): return " " in board # 判断是否有获胜者 def has_winner(): # 判断行 for i in range(0, 9, 3): if board[i] == board[i+1] == board[i+2] != " ": return True # 判断列 for i in range(3): if board[i] == board[i+3] == board[i+6] != " ": return True # 判断对角线 if board[0] == board[4] == board[8] != " " or board[2] == board[4] == board[6] != " ": return True return False # 评估函数 def evaluate(): if has_winner(): if player == "X": return 0 else: return 2 else: return 1 # 极小化极大算法 def minimax(alpha, beta, depth, is_maximizing): if has_winner(): return evaluate() elif not has_space(): return evaluate() elif depth == 0: return 1 if is_maximizing: best_score = -float("inf") for i in range(9): if board[i] == " ": board[i] = computer score = minimax(alpha, beta, depth-1, False) board[i] = " " best_score = max(score, best_score) alpha = max(alpha, score) if beta <= alpha: break return best_score else: best_score = float("inf") for i in range(9): if board[i] == " ": board[i] = player score = minimax(alpha, beta, depth-1, True) board[i] = " " best_score = min(score, best_score) beta = min(beta, score) if beta <= alpha: break return best_score # 电脑下棋 def computer_move(): best_score = -float("inf") best_move = None for i in range(9): if board[i] == " ": board[i] = computer score = minimax(-float("inf"), float("inf"), 5, False) board[i] = " " if score > best_score: best_score = score best_move = i board[best_move] = computer # 玩家下棋 def player_move(): valid_move = False while not valid_move: move = input("请输入你的下棋位置(1-9): ") try: move = int(move) - 1 if move >= 0 and move <= 8 and board[move] == " ": board[move] = player valid_move = True else: print("无效的位置,请重新输入!") except: print("无效的输入,请重新输入!") # 游戏循环 while True: print_board() player_move() if has_winner(): print_board() print("你赢了!") break elif not has_space(): print_board() print("平局!") break computer_move() if has_winner(): print_board() print("电脑赢了!") break elif not has_space(): print_board() print("平局!") break 在这个示例中,我们使用了极小化极大算法和Alpha-Beta剪枝算法来实现井字棋游戏。玩家使用X标记,电脑使用O标记。玩家和电脑轮流下棋,直到有一方获胜或者平局。在每次电脑下棋时,我们使用Alpha-Beta剪枝算法来遍历博弈树,以提高搜索效率。
以下是一个基于α-β剪枝算法的五子棋游戏代码示例(Python实现): python import random # 定义棋盘的大小 BOARD_SIZE = 15 # 定义棋子的类型 EMPTY = 0 BLACK = 1 WHITE = 2 # 定义棋子在棋盘上的表示方式 PIECE_STR = ['.', 'X', 'O'] # 定义棋盘 board = [[EMPTY for x in range(BOARD_SIZE)] for y in range(BOARD_SIZE)] # 定义α-β剪枝算法中的最大深度 MAX_DEPTH = 3 # 定义评估函数中的权重 SCORE_WEIGHTS = [0, 1, 10, 100, 1000, 10000] def print_board(): """打印棋盘""" print(" ", end="") for i in range(BOARD_SIZE): print("{:2d}".format(i), end="") print() for i in range(BOARD_SIZE): print("{:2d}".format(i), end="") for j in range(BOARD_SIZE): print(" " + PIECE_STR[board[i][j]], end="") print() def get_winner(): """获取胜者""" for x in range(BOARD_SIZE): for y in range(BOARD_SIZE): if board[x][y] == EMPTY: continue if y + 4 < BOARD_SIZE and \ board[x][y] == board[x][y + 1] == board[x][y + 2] == board[x][y + 3] == board[x][y + 4]: return board[x][y] if x + 4 < BOARD_SIZE and \ board[x][y] == board[x + 1][y] == board[x + 2][y] == board[x + 3][y] == board[x + 4][y]: return board[x][y] if x + 4 < BOARD_SIZE and y + 4 < BOARD_SIZE and \ board[x][y] == board[x + 1][y + 1] == board[x + 2][y + 2] == board[x + 3][y + 3] == board[x + 4][y + 4]: return board[x][y] if x + 4 < BOARD_SIZE and y - 4 >= 0 and \ board[x][y] == board[x + 1][y - 1] == board[x + 2][y - 2] == board[x + 3][y - 3] == board[x + 4][y - 4]: return board[x][y] return EMPTY def get_score(piece_type): """计算当前棋盘的得分""" score = 0 for x in range(BOARD_SIZE): for y in range(BOARD_SIZE): if board[x][y] != piece_type: continue for direction_x, direction_y in [(1, 0), (0, 1), (1, 1), (1, -1)]: cnt = 1 for i in range(1, 5): new_x, new_y = x + i * direction_x, y + i * direction_y if new_x >= BOARD_SIZE or new_y >= BOARD_SIZE or board[new_x][new_y] != piece_type: break cnt += 1 score += SCORE_WEIGHTS[cnt] return score def alpha_beta_pruning(piece_type, depth, alpha, beta): """α-β剪枝算法""" winner = get_winner() if winner == piece_type: return 1000000 if winner != EMPTY: return -1000000 if depth == MAX_DEPTH: return get_score(piece_type) - get_score(3 - piece_type) best_score = -float("inf") if piece_type == BLACK else float("inf") for x in range(BOARD_SIZE): for y in range(BOARD_SIZE): if board[x][y] != EMPTY: continue board[x][y] = piece_type score = alpha_beta_pruning(3 - piece_type, depth + 1, alpha, beta) board[x][y] = EMPTY if piece_type == BLACK: best_score = max(best_score, score) alpha = max(alpha, score) else: best_score = min(best_score, score) beta = min(beta, score) if alpha >= beta: return best_score return best_score def ai_make_move(): """AI下棋""" best_moves = [] best_score = -float("inf") for x in range(BOARD_SIZE): for y in range(BOARD_SIZE): if board[x][y] != EMPTY: continue board[x][y] = BLACK score = alpha_beta_pruning(WHITE, 1, -float("inf"), float("inf")) board[x][y] = EMPTY if score > best_score: best_score = score best_moves = [(x, y)] elif score == best_score: best_moves.append((x, y)) return random.choice(best_moves) if __name__ == "__main__": while True: print_board() winner = get_winner() if winner != EMPTY: print("游戏结束,胜者是:", PIECE_STR[winner]) break x, y = map(int, input("请下棋(x y):").split()) if board[x][y] != EMPTY: print("非法落子,请重新输入") continue board[x][y] = WHITE x, y = ai_make_move() print("AI下棋:", x, y) board[x][y] = BLACK 这个代码实现了一个简单的五子棋游戏,使用了α-β剪枝算法来实现AI下棋。其中,get_winner函数用来判断胜负,get_score函数用来评估当前棋盘的得分,alpha_beta_pruning函数用来执行α-β剪枝算法,ai_make_move函数用来让AI下棋。
以下是一个六子棋博弈树的α-β剪枝算法的Python代码: python import numpy as np # 博弈树节点 class Node: def __init__(self, state, depth, alpha=-np.inf, beta=np.inf): self.state = state self.depth = depth self.alpha = alpha self.beta = beta self.children = [] def is_terminal(self): return self.depth == 0 or self.state.is_game_over() def evaluate(self): # 计算当前节点的估价值 return self.state.evaluate() def generate_children(self): # 生成当前节点的所有子节点 for move in self.state.get_legal_moves(): new_state = self.state.apply_move(move) child = Node(new_state, self.depth - 1) self.children.append(child) def get_best_child(self): # 获取当前节点的最佳子节点 best_child = None if self.children: best_child = self.children[0] for child in self.children: if child.alpha >= best_child.alpha: best_child = child return best_child # MiniMax算法 def minimax(node, maximizing_player): if node.is_terminal(): return node.evaluate() if maximizing_player: value = -np.inf for child in node.children: value = max(value, minimax(child, False)) node.alpha = max(node.alpha, value) if node.beta <= node.alpha: break return value else: value = np.inf for child in node.children: value = min(value, minimax(child, True)) node.beta = min(node.beta, value) if node.beta <= node.alpha: break return value # α-β剪枝算法 def alphabeta(node, depth, alpha, beta, maximizing_player): if depth == 0 or node.is_terminal(): return node.evaluate() if maximizing_player: value = -np.inf for child in node.children: value = max(value, alphabeta(child, depth - 1, alpha, beta, False)) alpha = max(alpha, value) if beta <= alpha: break return value else: value = np.inf for child in node.children: value = min(value, alphabeta(child, depth - 1, alpha, beta, True)) beta = min(beta, value) if beta <= alpha: break return value # 六子棋游戏状态 class GameState: def __init__(self): self.board = np.zeros((6, 6), dtype=int) self.current_player = 1 def is_game_over(self): # 判断游戏是否结束 if self.get_winner() is not None: return True return False def get_winner(self): # 判断游戏胜负 for i in range(6): if np.sum(self.board[i]) == 6: return 1 elif np.sum(self.board[i]) == -6: return -1 for i in range(6): if np.sum(self.board[:, i]) == 6: return 1 elif np.sum(self.board[:, i]) == -6: return -1 if self.board.trace() == 6 or np.fliplr(self.board).trace() == 6: return 1 elif self.board.trace() == -6 or np.fliplr(self.board).trace() == -6: return -1 return None def evaluate(self): # 计算当前游戏状态的估价值 winner = self.get_winner() if winner is not None: return winner * np.inf else: return np.sum(self.board) def get_legal_moves(self): # 获取当前玩家的合法落子位置 moves = [] for i in range(6): for j in range(6): if self.board[i][j] == 0: moves.append((i, j)) return moves def apply_move(self, move): # 更新游戏状态 new_state = GameState() new_state.board = np.copy(self.board) new_state.current_player = -self.current_player i, j = move new_state.board[i][j] = self.current_player return new_state # 初始化博弈树 def initialize_tree(state, depth): root = Node(state, depth) root.generate_children() return root # 选择最佳落子位置 def select_move(state, depth): root = initialize_tree(state, depth) for child in root.children: minimax(child, False) #alphabeta(child, depth - 1, -np.inf, np.inf, False) # 使用α-β剪枝算法 root.alpha = max(root.alpha, child.alpha) best_child = root.get_best_child() return best_child.state.get_last_move() # 测试 state = GameState() while not state.is_game_over(): if state.current_player == 1: move = select_move(state, 3) state = state.apply_move(move) else: move = tuple(map(int, input("请输入黑方落子位置:").split())) state = state.apply_move(move) print(state.board) print("游戏结束,胜利者为", state.get_winner()) 在代码中,Node类表示一个博弈树节点,GameState类表示一个六子棋游戏状态。minimax函数是标准的MiniMax算法,alphabeta函数是α-β剪枝算法。initialize_tree函数用于初始化博弈树,select_move函数用于选择最佳落子位置。在测试部分,程序会先使用AI自动落子,然后等待人类玩家输入落子位置,直到游戏结束。
α-β剪枝法是一种用于减少搜索树节点的搜索量的优化算法。它是对Minimax算法的一种优化,通过剪枝的方式减少了搜索树的节点数。下面是一个用Python实现的α-β剪枝法的示例代码: python def alpha_beta_pruning(board, depth, alpha, beta, is_max_player): if depth == 0 or board.is_game_over(): return evaluate(board), None if is_max_player: max_value = float('-inf') best_move = None for move in board.legal_moves: board.push(move) value, _ = alpha_beta_pruning(board, depth - 1, alpha, beta, False) board.pop() if value > max_value: max_value = value best_move = move alpha = max(alpha, max_value) if alpha >= beta: break return max_value, best_move else: min_value = float('inf') best_move = None for move in board.legal_moves: board.push(move) value, _ = alpha_beta_pruning(board, depth - 1, alpha, beta, True) board.pop() if value < min_value: min_value = value best_move = move beta = min(beta, min_value) if alpha >= beta: break return min_value, best_move 在这个代码中,我们使用了一个evaluation函数来评估当前局面的得分。在每次递归时,我们选择一个最佳移动,然后递归调用alpha_beta_pruning函数,直到到达指定的深度或者游戏结束。如果当前玩家是max玩家,我们会尝试找到最大的得分,并且更新alpha值。如果当前玩家是min玩家,我们会尝试找到最小的得分,并且更新beta值。在搜索过程中,我们会根据alpha和beta的大小关系进行剪枝。
好的,下面是用alphabeta剪枝实现五子棋的Python代码: python import numpy as np # 定义棋盘大小 BOARD_SIZE = 15 # 定义棋子类型 EMPTY = 0 BLACK = 1 WHITE = 2 # 定义评估函数中的棋型 FIVE = 100000 # 连五 FOUR = 10000 # 活四 THREE = 1000 # 活三 TWO = 100 # 活二 # 定义走法评分表 score_table = { FIVE: 100000, FOUR + THREE: 10000, THREE + THREE: 5000, FOUR + TWO: 5000, THREE + TWO: 1000, TWO + TWO: 500, FOUR: 500, THREE: 100, TWO: 50, } # 初始化棋盘 board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int) # 判断是否在棋盘内 def is_in_board(x, y): return 0 <= x < BOARD_SIZE and 0 <= y < BOARD_SIZE # 判断某一位置是否可以下棋 def is_valid_move(x, y): return is_in_board(x, y) and board[x][y] == EMPTY # 判断是否五子连珠 def is_five_in_a_row(x, y, player): # 水平方向 count = 1 for i in range(1, 5): if is_in_board(x+i, y) and board[x+i][y] == player: count += 1 else: break for i in range(1, 5): if is_in_board(x-i, y) and board[x-i][y] == player: count += 1 else: break if count >= 5: return True # 垂直方向 count = 1 for i in range(1, 5): if is_in_board(x, y+i) and board[x][y+i] == player: count += 1 else: break for i in range(1, 5): if is_in_board(x, y-i) and board[x][y-i] == player: count += 1 else: break if count >= 5: return True # 左上-右下方向 count = 1 for i in range(1, 5): if is_in_board(x+i, y+i) and board[x+i][y+i] == player: count += 1 else: break for i in range(1, 5): if is_in_board(x-i, y-i) and board[x-i][y-i] == player: count += 1 else: break if count >= 5: return True # 右上-左下方向 count = 1 for i in range(1, 5): if is_in_board(x+i, y-i) and board[x+i][y-i] == player: count += 1 else: break for i in range(1, 5): if is_in_board(x-i, y+i) and board[x-i][y+i] == player: count += 1 else: break if count >= 5: return True return False # 获得当前棋盘中的所有空位 def get_empty_positions(): positions = [] for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: positions.append((i, j)) return positions # 评估当前棋盘状态 def evaluate_board(player): opp = BLACK if player == WHITE else WHITE score = 0 for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == player: # 水平方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j) and board[i+k][j] == player: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j) and board[i-k][j] == player: count += 1 else: break score += score_table.get(count*1000, 0) # 垂直方向 count = 1 for k in range(1, 5): if is_in_board(i, j+k) and board[i][j+k] == player: count += 1 else: break for k in range(1, 5): if is_in_board(i, j-k) and board[i][j-k] == player: count += 1 else: break score += score_table.get(count*1000, 0) # 左上-右下方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j+k) and board[i+k][j+k] == player: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j-k) and board[i-k][j-k] == player: count += 1 else: break score += score_table.get(count*1000, 0) # 右上-左下方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j-k) and board[i+k][j-k] == player: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j+k) and board[i-k][j+k] == player: count += 1 else: break score += score_table.get(count*1000, 0) elif board[i][j] == opp: # 水平方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j) and board[i+k][j] == opp: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j) and board[i-k][j] == opp: count += 1 else: break score -= score_table.get(count*1000, 0) # 垂直方向 count = 1 for k in range(1, 5): if is_in_board(i, j+k) and board[i][j+k] == opp: count += 1 else: break for k in range(1, 5): if is_in_board(i, j-k) and board[i][j-k] == opp: count += 1 else: break score -= score_table.get(count*1000, 0) # 左上-右下方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j+k) and board[i+k][j+k] == opp: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j-k) and board[i-k][j-k] == opp: count += 1 else: break score -= score_table.get(count*1000, 0) # 右上-左下方向 count = 1 for k in range(1, 5): if is_in_board(i+k, j-k) and board[i+k][j-k] == opp: count += 1 else: break for k in range(1, 5): if is_in_board(i-k, j+k) and board[i-k][j+k] == opp: count += 1 else: break score -= score_table.get(count*1000, 0) return score # 极大极小搜索 + alphabeta剪枝 def alphabeta_search(player, depth, alpha, beta): if depth == 0: return None, evaluate_board(player) positions = get_empty_positions() if len(positions) == 0: return None, 0 best_pos = None if player == BLACK: best_score = -np.inf for pos in positions: x, y = pos board[x][y] = BLACK if is_five_in_a_row(x, y, BLACK): board[x][y] = EMPTY return pos, FIVE _, score = alphabeta_search(WHITE, depth-1, alpha, beta) board[x][y] = EMPTY if score > best_score: best_score = score best_pos = pos alpha = max(alpha, best_score) if alpha >= beta: break else: best_score = np.inf for pos in positions: x, y = pos board[x][y] = WHITE if is_five_in_a_row(x, y, WHITE): board[x][y] = EMPTY return pos, -FIVE _, score = alphabeta_search(BLACK, depth-1, alpha, beta) board[x][y] = EMPTY if score < best_score: best_score = score best_pos = pos beta = min(beta, best_score) if alpha >= beta: break return best_pos, best_score # 人机对战 def play_with_computer(): print("-----五子棋人机对战-----") print("玩家执黑棋,电脑执白棋") print("请输入您的下棋坐标,格式为x,y,如2,3") # 随机先后手 if np.random.randint(2) == 0: player = BLACK print("您先手") else: player = WHITE print("电脑先手") while True: if player == BLACK: # 人下棋 while True: move = input("请您输入下棋坐标:") x, y = [int(i) for i in move.split(",")] if is_valid_move(x, y): board[x][y] = BLACK break else: print("该位置已有棋子,请重新输入") else: # 电脑下棋 print("电脑正在思考...") pos, _ = alphabeta_search(WHITE, 3, -np.inf, np.inf) x, y = pos board[x][y] = WHITE print("电脑下棋坐标:{},{}".format(x, y)) # 打印棋盘 for i in range(BOARD_SIZE): print(" ".join(str(x) for x in board[i])) print("-" * 20) # 判断游戏是否结束 if is_five_in_a_row(x, y, player): if player == BLACK: print("恭喜您获胜!") else: print("很遗憾,您输了!") break if len(get_empty_positions()) == 0: print("平局!") break # 交换先后手 player = BLACK if player == WHITE else WHITE play_with_computer() 在以上代码中,我们定义了五子棋的棋盘大小、棋子类型、评估函数中的棋型、走法评分表等变量。首先,我们定义了一些基本的函数,如判断某一位置是否可以下棋、判断是否五子连珠、获得当前棋盘中的所有空位等。接着,我们定义了评估函数,该函数通过检查棋盘中各种棋型的数量来评估当前棋盘状态,并返回一个分数。我们还实现了极大极小搜索算法和alphabeta剪枝算法,用于搜索最优解。最后,我们实现了一个人机对战的函数,通过不断交替让玩家和电脑下棋来进行游戏。
好的,下面是一个简单的五子棋人机博弈系统的Python代码,使用了简单的 MiniMax 算法和 Alpha-Beta 剪枝算法: python import numpy as np # 定义棋盘大小 BOARD_SIZE = 15 # 定义棋子类型 EMPTY = 0 BLACK = 1 WHITE = 2 # 定义胜利条件 WIN_COUNT = 5 # 定义深度 DEPTH = 3 # 创建棋盘 board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int) # 定义落子函数 def move(x, y, player): if board[x][y] == EMPTY: board[x][y] = player return True else: return False # 定义判断胜利函数 def is_win(x, y, player): # 判断横向是否有五子连珠 count = 0 for i in range(max(0, x - WIN_COUNT + 1), min(BOARD_SIZE, x + WIN_COUNT)): if board[i][y] == player: count += 1 if count == WIN_COUNT: return True else: count = 0 # 判断纵向是否有五子连珠 count = 0 for j in range(max(0, y - WIN_COUNT + 1), min(BOARD_SIZE, y + WIN_COUNT)): if board[x][j] == player: count += 1 if count == WIN_COUNT: return True else: count = 0 # 判断左上到右下是否有五子连珠 count = 0 for i, j in zip(range(max(0, x - WIN_COUNT + 1), min(BOARD_SIZE, x + WIN_COUNT)), range(max(0, y - WIN_COUNT + 1), min(BOARD_SIZE, y + WIN_COUNT))): if board[i][j] == player: count += 1 if count == WIN_COUNT: return True else: count = 0 # 判断右上到左下是否有五子连珠 count = 0 for i, j in zip(range(max(0, x - WIN_COUNT + 1), min(BOARD_SIZE, x + WIN_COUNT)), range(min(BOARD_SIZE - 1, y + WIN_COUNT - 1), max(-1, y - WIN_COUNT), -1)): if board[i][j] == player: count += 1 if count == WIN_COUNT: return True else: count = 0 return False # 定义评估函数 def evaluate(player): score = 0 for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: continue elif board[i][j] == player: score += 10 else: score -= 10 return score # 定义 MiniMax 算法 def minimax(depth, player, alpha, beta): if depth == 0 or is_game_over(): return evaluate(player) if player == BLACK: best_score = -np.inf for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: move(i, j, player) score = minimax(depth - 1, WHITE, alpha, beta) move(i, j, EMPTY) best_score = max(best_score, score) alpha = max(alpha, best_score) if alpha >= beta: break return best_score else: best_score = np.inf for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: move(i, j, player) score = minimax(depth - 1, BLACK, alpha, beta) move(i, j, EMPTY) best_score = min(best_score, score) beta = min(beta, best_score) if alpha >= beta: break return best_score # 定义 Alpha-Beta 剪枝算法 def alphabeta(depth, player, alpha, beta): if depth == 0 or is_game_over(): return evaluate(player) if player == BLACK: for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: move(i, j, player) alpha = max(alpha, alphabeta(depth - 1, WHITE, alpha, beta)) move(i, j, EMPTY) if alpha >= beta: return alpha return alpha else: for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: move(i, j, player) beta = min(beta, alphabeta(depth - 1, BLACK, alpha, beta)) move(i, j, EMPTY) if alpha >= beta: return beta return beta # 定义判断游戏是否结束函数 def is_game_over(): for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: return False return True # 定义主函数 def main(): # 初始化玩家和落子位置 player = BLACK x, y = -1, -1 # 游戏开始 print("游戏开始!") while True: # 输出棋盘 print(board) # 玩家落子 if player == BLACK: print("轮到玩家落子:") x = int(input("请输入落子横坐标:")) y = int(input("请输入落子纵坐标:")) if not move(x, y, player): print("此处已有棋子,请重新输入!") continue # AI 落子 else: print("轮到 AI 落子:") best_score = -np.inf for i in range(BOARD_SIZE): for j in range(BOARD_SIZE): if board[i][j] == EMPTY: move(i, j, player) score = alphabeta(DEPTH, BLACK, -np.inf, np.inf) move(i, j, EMPTY) if score > best_score: best_score = score x, y = i, j move(x, y, player) # 判断胜负 if is_win(x, y, player): print("恭喜玩家 %s 获胜!" % ("黑方" if player == BLACK else "白方")) print(board) break # 切换玩家 player = BLACK if player == WHITE else WHITE if __name__ == "__main__": main() 这个代码实现了一个简单的五子棋人机博弈系统,玩家可以与 AI 进行对弈,AI 使用 Alpha-Beta 剪枝算法进行决策。你可以根据需要进行修改和扩展,实现更加智能和完整的五子棋人机博弈系统。

最新推荐

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�

valueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

这个错误通常发生在使用 Pandas DataFrame 时,其中包含了一些不能被转换为数字类型的数据。 解决方法是使用 `pd.to_numeric()` 函数将数据转换为数字类型。例如: ```python import pandas as pd import numpy as np # 创建一个包含字符串和数字的 DataFrame df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, '3']}) # 尝试将整个 DataFrame 转换为数字类型会报错 np.asarray(df, dtype=np.float) # 使

基于VC--的五子棋程序设计与实现毕业设计.doc

基于VC--的五子棋程序设计与实现毕业设计.doc

体系结构驱动的普遍性应用程序中

体系结构驱动的普遍性应用程序的自主适应艾蒂安·甘德里勒引用此版本:艾蒂安·甘德里勒。由体系结构驱动的普遍性应用程序的自主适应。无处不在的计算。格勒诺布尔大学,2014年。法语。NNT:2014GRENM078。电话:01215004HAL ID:电话:01215004https://theses.hal.science/tel-01215004提交日期:2015年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文要获得的等级格勒诺布尔大学博士专业:计算机科学部长令:2006年提交人艾蒂安·G·安德里尔论文由Philippe LAlanda指导由Stephanie CHollet共同指导在格勒诺布尔计算机科学实验室编写数学、信息科学与技术、计算机科学博士体系结构驱动的普遍性应用程序的自主适应论文�

STM32F103 RCT6 LCD显示正弦波并且设置可以调节振幅的触摸按键代码

以下是基于STM32F103RCT6和Keil MDK-ARM开发环境的LCD显示正弦波并且设置可以调节振幅的触摸按键代码: ```c #include "stm32f10x.h" #include "lcd.h" //LCD驱动库 #include "math.h" //数学库 #define PI 3.14159 //圆周率 void delay_ms(uint16_t n); int main(void) { float amplitude = 20; //振幅 float frequency = 1; //频率 float phase = 0; //相位

我国软件和信息技术服务业的发展现状及存在的问题.pdf

我国软件和信息技术服务业的发展现状及存在的问题.pdf