size mismatch for cls_conv.weight: copying a param with shape torch.Size([21, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([3, 256, 1, 1]). size mismatch for cls_conv.bias: copying a param with shape torch.Size([21]) from checkpoint, the shape in current model is torch.Size([3]).

时间: 2024-02-02 20:27:41 浏览: 40
这个错误是因为您正在尝试加载一个预训练模型,但是模型的结构与预训练模型的结构不匹配。 错误信息中显示了两个不匹配的参数:`cls_conv.weight` 和 `cls_conv.bias`。预训练模型中这些参数的形状为 `[21, 256, 1, 1]` 和 `[21]`,而当前模型中的形状为 `[3, 256, 1, 1]` 和 `[3]`。 解决这个问题的一种方法是修改当前模型的结构,使其与预训练模型的结构保持一致。您可以根据实际情况调整模型的层数或参数数量,或者使用其他方法进行适配。 另外,如果您不需要使用预训练模型的权重,您也可以尝试重新训练模型,或者使用其他适合您任务的预训练模型。 希望对您有所帮助!如果您还有其他问题,请随时提问。
相关问题

size mismatch for classifier.4.weight: copying a param with shape torch.size

出现“size mismatch for classifier.4.weight: copying a param with shape torch.size”错误通常是由于尝试复制参数时参数的形状不匹配引起的。 在深度学习中,神经网络的模型通常由多个层组成,每个层使用一些参数来进行训练和优化。当我们尝试复制参数时,要确保目标参数具有与源参数相同的形状,否则会出现“size mismatch”错误。 在这个错误消息中,是由于在尝试复制classifier.4.weight参数时,目标参数的形状与源参数不匹配。这可能是因为源参数的形状与目标参数的形状不一致,导致无法直接复制。 解决此问题的一种方法是通过调整目标参数的形状来与源参数相匹配。在PyTorch中,我们可以使用torch.view()函数更改张量的形状。通过调整目标参数的形状,使其与源参数具有相同的尺寸,就可以解决这个错误。 具体的调整方法可能因具体情况而异,但一般步骤是使用torch.view()函数调整目标参数的形状,使其与源参数具有相同的维度和元素个数。 总结:出现“size mismatch for classifier.4.weight: copying a param with shape torch.size”错误是因为参数的形状不匹配。通过调整目标参数的形状,使其与源参数具有相同的尺寸,可以解决这个问题。

size mismatch for last_layer0.6.weight: copying a param with shape torch.siz

size mismatch for last_layer0.6.weight: copying a param with shape torch.size 这个错误提示是指在拷贝一个形状为torch.size的参数last_layer0.6.weight时,尺寸大小不匹配。 出现这个错误通常是由于两个不同尺寸的参数之间进行了拷贝操作,导致尺寸不匹配。在深度学习领域,模型的参数通常会使用张量来表示,张量的形状由维度大小决定。 对于解决这个问题,我们可以尝试以下几步: 1. 检查模型中的网络结构,确保参数的维度定义正确。比较拷贝源和目标参数的维度,确认是否一致。 2. 检查数据的尺寸,确保输入数据与模型期望的形状匹配。数据和模型的输入形状应该一致,否则可能导致尺寸不匹配错误。 3. 检查模型训练过程中的代码,确认是否有错误的拷贝操作。可能存在代码中的错误,导致参数的拷贝出现问题。 4. 如果以上步骤都正常,可以尝试重新初始化参数并重新训练模型。有时候参数的拷贝错误可能是由之前训练过程中的问题引起的,重新训练可能解决该问题。 总之,通过检查模型结构,输入数据和代码逻辑,我们应该能够找到和解决拷贝参数尺寸不匹配的问题。

相关推荐

最新推荐

JavaScript介绍.zip

javascript,JavaScript 最初由 Netscape 公司的 Brendan Eich 在 1995 年开发,用于 Netscape Navigator 浏览器。随着时间的推移,JavaScript 成为了网页开发中不可或缺的一部分,并且其应用范围已经远远超出了浏览器,成为了全栈开发的重要工具。

上位机开发罗克韦尔abcip通信协议详解

上位机开发罗克韦尔abcip通信协议详解 1.注册会话命令详解 6500 0400 00000000 00000000 0000000000000000 00000000 0100 0000 响应 6500 0400 05000400 00000000 0000000000000000 00000000 0100 0000 6500:注册请求命令 0400:服务长度(0100 0000) 00000000:会话句柄 (由PLC生成) 00000000:状态默认 0000000000000000:发送方描述,默认0 00000000:选项,默认0 0100:协议版本,默认1 0000:选项标记,默认0

stc12c5a60s2 例程

stc12c5a60s2 单片机的所有功能的实例,包括SPI、AD、串口、UCOS-II操作系统的应用。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

margin-top: 50%;

margin-top: 50%; 是一种CSS样式代码,用于设置元素的上边距(即与上方元素或父级元素之间的距离)为其父元素高度的50%。 这意味着元素的上边距将等于其父元素高度的50%。例如,如果父元素的高度为100px,则该元素的上边距将为50px。 请注意,这个值只在父元素具有明确的高度(非auto)时才有效。如果父元素的高度是auto,则无法确定元素的上边距。 希望这个解释对你有帮助!如果你还有其他问题,请随时提问。

Android通过全局变量传递数据

在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和访问 除非是Web服务器停止 Android中的全局对象非常类似于Java Web中的Application域 除非是Android应用程序清除内存 否则全局对象将一直可以访问 1 定义一个类继承Application public class MyApp extends Application 2 在AndroidMainfest xml中加入全局变量 android:name " MyApp" 3 在传数据类中获取全局变量Application对象并设置数据 myApp MyApp getApplication ; myApp setName "jack" ; 修改之后的名称 4 在收数据类中接收Application对象 myApp MyApp getApplication ;">在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和 [更多]

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向

![【未来发展趋势下的车牌识别技术展望和发展方向】: 展望未来发展趋势下的车牌识别技术和发展方向](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 车牌识别技术简介 车牌识别技术是一种通过计算机视觉和深度学习技术,实现对车牌字符信息的自动识别的技术。随着人工智能技术的飞速发展,车牌识别技术在智能交通、安防监控、物流管理等领域得到了广泛应用。通过车牌识别技术,可以实现车辆识别、违章监测、智能停车管理等功能,极大地提升了城市管理和交通运输效率。本章将从基本原理、相关算法和技术应用等方面介绍

javaagent和javassit区别

JavaAgent 和 Javassist 是 Java 开发中常用的两个概念,它们在功能和应用场景上有一些区别。 JavaAgent 是 Java 虚拟机 (JVM) 提供的一个机制,允许在程序运行时对字节码进行修改和增强。通过 JavaAgent,开发者可以在应用程序运行期间动态地修改已加载的类或者增加新的类,从而实现对程序行为的改变。JavaAgent 主要应用于性能监控、代码热替换、AOP(面向切面编程)等方面。 Javassist 是一个开源的 Java 字节码操作库,它提供了一组简单易用的 API,用于在运行时修改字节码。Javassist 可以通过修改字节码来实现类似于 Ja