编写基于完全约束最小二乘法(Fully Constrained Least Squares,FCLS)的遥感影像光谱解混的python代码实现,读取tif数据使用gdal,数据分析使用numpy
时间: 2024-12-13 21:15:52 浏览: 24
ENVI扩展工具:完全约束最小二乘法混合像元分解FCLS Spectral Unmixing
5星 · 资源好评率100%
在Python中,我们可以结合GDAL读取TIFF文件,NumPy进行数值计算,以及基于完全约束最小二乘法(FCLS)进行遥感影像光谱解混。这里给出一个简化版的实现,假设你已经有了每个传感器的校准系数矩阵和目标地物的光谱曲线:
```python
from osgeo import gdal
import numpy as np
import scipy.optimize as optimize
# 读取TIFF文件
def read_tiff(file_path):
dataset = gdal.Open(file_path)
data = dataset.ReadAsArray()
return data
# 完全约束最小二乘解混
def fcls_deconvolution(band_data, calibration_matrices, reference_spectra):
def residual(c):
return np.sum((np.dot(calibration_matrices, c) - band_data) ** 2)
initial_guess = np.ones((reference_spectra.shape[0], 1))
bounds = [(0, None)] * initial_guess.shape[0] # 确保所有成分非负
result = optimize.minimize(residual, initial_guess, method='SLSQP', bounds=bounds)
deconvolved_spectrum = result.x
return deconvolved_spectrum
# 示例用法
file_path = 'path_to_your_image.tif'
band_data = read_tiff(file_path)
calibration_matrices = ... # 校准系数矩阵
reference_spectra = ... # 目标地物参考光谱
deconvolved_spectrum = fcls_deconvolution(band_data, calibration_matrices, reference_spectra)
print("解混后的光谱:", deconvolved_spectrum)
阅读全文