uint8_t func_bit0 : 1
时间: 2023-08-19 07:14:27 浏览: 127
根据引用\[1\],uint8_t是一个8位无符号整数类型。而在引用\[3\]中提到,当进行值传递时,不需要考虑类型,只要确保传递的值不超过接收参数的类型所能容纳的范围即可。因此,uint8_t func_bit0 : 1表示一个占用1位的位字段,其类型为uint8_t,可以存储0或1的值。
#### 引用[.reference_title]
- *1* *2* *3* [function函数参数数据类型不对应的问题(比如uint8_t 和 int) 位域 联合体 结构体访问方式,杂项](https://blog.csdn.net/qq_29806621/article/details/79283141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
#include "dht11.h" void Delay_us(uint16_t delay) { __HAL_TIM_DISABLE(&htim3); __HAL_TIM_SET_COUNTER(&htim3,0); __HAL_TIM_ENABLE(&htim3); uint16_t curCnt=0; while(1) { curCnt=__HAL_TIM_GET_COUNTER(&htim3); if(curCnt>=delay) break; } __HAL_TIM_DISABLE(&htim3); } void DHT11_OUT(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_IN(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_Strat(void) { DHT11_OUT(); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET); Delay_us(30); } uint8_t DHT11_Check(void) { uint8_t retry = 0 ; DHT11_IN(); while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} else retry = 0 ; while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} return 0 ; } uint8_t DHT11_Read_Bit(void) { uint8_t retry = 0 ; while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100) { retry++; Delay_us(1); } retry = 0 ; while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100) { retry++; Delay_us(1); } Delay_us(40); if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1; else return 0 ; } uint8_t DHT11_Read_Byte(void) { uint8_t i , dat ; dat = 0 ; for(i=0; i<8; i++) { dat <<= 1; dat |= DHT11_Read_Bit(); } return dat ; } uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) { uint8_t buf[5]; uint8_t i; DHT11_Strat(); if(DHT11_Check() == 0) { for(i=0; i<5; i++) { buf[i] = DHT11_Read_Byte(); } if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4]) { *humi = buf[0]; *temp = buf[2]; } }else return 1; return 0 ; } void func_1() { uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; while(1){ DHT11_Read_Data(&temperature , &humidity); sprintf((char*)aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity); HAL_UART_Transmit(&huart1, aTXbuf, strlen((const char*)aTXbuf), 200); HAL_Delay(5000); } } int temperature_humidity_device_control(protocol_package_t *pk) { printf("temperature_humidity_device_control\r\n"); if(pk->function == 0x16 && pk->data[0] == 0x00) { printf("temperature_humidity_device_control success\r\n"); uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; //DHT11_Read_Data(&temperature , &humidity); pk->data[0] = 0x35; } return 0; }改错
在你提供的代码中,没有包含头文件 "main.h" 和 "stdio.h"。你需要添加这两个头文件到你的代码中,这样才能正确使用其中的函数和变量。
另外,你在调用 sprintf 函数时,第二个参数类型应该是 char*,而不是 uint8_t*。因此,你需要将 aTXbuf 声明为 char 类型数组,而不是 uint8_t 类型数组。同时,在使用 strlen 函数计算字符串长度时,应该传入一个 char* 类型的参数。
最后,你可以将 DHT11_Read_Data 函数的返回值直接返回,而不需要使用 if-else 语句判断后再返回。因为函数内部已经有了返回值,可以直接将其返回给调用者。
以下是修改后的代码:
```c
#include "main.h"
#include "stdio.h"
#include "dht11.h"
extern UART_HandleTypeDef huart1;
extern TIM_HandleTypeDef htim3;
void Delay_us(uint16_t delay) {
__HAL_TIM_DISABLE(&htim3);
__HAL_TIM_SET_COUNTER(&htim3,0);
__HAL_TIM_ENABLE(&htim3);
uint16_t curCnt=0;
while(1)
{
curCnt=__HAL_TIM_GET_COUNTER(&htim3);
if(curCnt>=delay)
break;
}
__HAL_TIM_DISABLE(&htim3);
}
void DHT11_OUT(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void DHT11_IN(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void DHT11_Strat(void) {
DHT11_OUT();
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET);
HAL_Delay(20);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET);
Delay_us(30);
}
uint8_t DHT11_Check(void) {
uint8_t retry = 0 ;
DHT11_IN();
while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100)
{
retry++;
Delay_us(1);//1us
}
if(retry>=100)
{return 1;}
else retry = 0 ;
while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100)
{
retry++;
Delay_us(1);//1us
}
if(retry>=100)
{return 1;}
return 0 ;
}
uint8_t DHT11_Read_Bit(void) {
uint8_t retry = 0 ;
while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100)
{
retry++;
Delay_us(1);
}
retry = 0 ;
while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100)
{
retry++;
Delay_us(1);
}
Delay_us(40);
if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1;
else return 0 ;
}
uint8_t DHT11_Read_Byte(void) {
uint8_t i , dat ;
dat = 0 ;
for(i=0; i<8; i++)
{
dat <<= 1;
dat |= DHT11_Read_Bit();
}
return dat ;
}
uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) {
uint8_t buf[5];
uint8_t i;
DHT11_Strat();
if(DHT11_Check() == 0)
{
for(i=0; i<5; i++)
{
buf[i] = DHT11_Read_Byte();
}
if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4])
{
*humi = buf[0];
*temp = buf[2];
return 0;
}
}
return 1;
}
void func_1() {
uint8_t temperature = 1;
uint8_t humidity = 1;
char aTXbuf[32];
while(1){
DHT11_Read_Data(&temperature , &humidity);
sprintf(aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity);
HAL_UART_Transmit(&huart1, (uint8_t*)aTXbuf, strlen(aTXbuf), 200);
HAL_Delay(5000);
}
}
int temperature_humidity_device_control(protocol_package_t *pk) {
printf("temperature_humidity_device_control\r\n");
if(pk->function == 0x16 && pk->data[0] == 0x00)
{
printf("temperature_humidity_device_control success\r\n");
uint8_t temperature = 1 ;
uint8_t humidity = 1;
char aTXbuf[32];
DHT11_Read_Data(&temperature , &humidity);
sprintf(aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity);
strncpy((char*)pk->data, aTXbuf, strlen(aTXbuf));
pk->data_len = strlen(aTXbuf);
pk->data[0] = 0x35;
}
return 0;
}
```
解释这段代码怎么实现I2C发送的void I2C_SendBytes(I2C_TypeDef *I2Cx, uint8_t *Src, uint32_t len) { DMA_TypeDef *DMAx; _ASSERT(IS_I2C(I2Cx)); _ASSERT(len < 0xfffff); I2Cx->CTRL2.bit.RESTART = I2C_WRITE_FUNC; DMAx = (DMA_TypeDef *)((uint32_t)I2Cx - sizeof(DMA_TypeDef)); DMAx->SRC_ADDR.reg = (uint32_t)Src; DMAx->LEN_LOW.bit.TX_LEN_L = len & 0xffff; DMAx->CTRL.bit.TX_LEN_H = len >> 16; DMAx->LEN_LOW.bit.RX_LEN_L = 0; DMAx->CTRL.bit.RX_LEN_H = 0; DMAx->CTRL.bit.START = 1; while (DMAx->STATUS.bit.DONE != 1); }
这段代码实现了使用DMA进行I2C发送。具体实现步骤如下:
1. 首先进行了一些断言判断,确保传入的I2C和数据长度符合要求。
2. 将I2C的CTRL2寄存器中的RESTART位设置为I2C_WRITE_FUNC,表示接下来要进行I2C写操作。
3. 通过I2Cx指针计算出DMAx指针,因为在STM32系列中,I2C和DMA的寄存器是相邻的,所以可以通过这种方式计算出DMA的寄存器地址。
4. 通过DMAx指针设置DMA的源地址为Src,即要发送的数据缓存区地址。
5. 设置DMA的传输长度为len,即要发送的数据长度。
通过以上步骤,就可以使用DMA进行I2C发送了。这种方法相对于软件方式来说,可以大大提高数据传输的效率和可靠性,特别是在需要大量数据传输的场合下,可以有效减少CPU的占用率。
阅读全文