我有一个10行10列的数据集,使用KNN构造邻接矩阵,并将它们与节点特征一起作为输入传递给GCNConv层,请帮我写出基于pytorch geometric实现图分类的图卷积网络代码
时间: 2024-04-29 15:26:04 浏览: 154
好的,以下是基于pytorch geometric实现图分类的图卷积网络代码:
```python
import torch
from torch_geometric.nn import GCNConv
from torch_geometric.utils import to_dense_adj
from sklearn.neighbors import kneighbors_graph
# Define the input data
X = torch.rand(100, 4) # 100 nodes with 4 features each
A = kneighbors_graph(X, 10, mode='connectivity') # 10 nearest neighbors graph
A = to_dense_adj(A)[0] # Convert sparse adjacency matrix to dense tensor
# Define the graph convolutional neural network
class GCNNet(torch.nn.Module):
def __init__(self):
super(GCNNet, self).__init__()
self.conv1 = GCNConv(4, 16) # Input features: 4, output features: 16
self.conv2 = GCNConv(16, 2) # Input features: 16, output features: 2
def forward(self, x, edge_index):
x = self.conv1(x, edge_index)
x = torch.relu(x)
x = self.conv2(x, edge_index)
return x
# Instantiate the GCNNet model and define the loss function and optimizer
model = GCNNet()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Train the model
for epoch in range(100):
optimizer.zero_grad()
output = model(X, A)
loss = criterion(output, torch.tensor([0]*50+[1]*50)) # Assuming 2 classes
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print('Epoch [%d/%d] Loss: %.4f' % (epoch+1, 100, loss.data))
```
这段代码实现了一个包含两个GCNConv层的图卷积网络,用于对输入的节点及邻接矩阵进行图分类。首先,使用sklearn库的kneighbors_graph函数构造一个由10个最近邻的邻接矩阵,并将其转换为dense tensor。然后,定义了一个GCNNet类,其中包含两个GCNConv层,分别将输入特征从4维映射到16维,再从16维映射到2维。在forward函数中,首先对输入特征和邻接矩阵进行一次GCNConv操作,再通过ReLU激活函数进行非线性变换,最后再进行一次GCNConv操作。该类就是我们需要的图卷积网络。接下来,我们实例化这个类并定义损失函数和优化器。在训练循环中,首先将模型参数的梯度清零,然后进行模型计算,评估模型输出与真实标签之间的损失,反向传播更新模型参数。在每个epoch的结尾,输出当前损失。
阅读全文