完善基于PyTorch的条件生成对抗网络(CGAN)的代码框架
时间: 2024-02-09 09:09:05 浏览: 72
PyTorch生成对抗网络(DCGAN)代码.zip
5星 · 资源好评率100%
好的,我可以为你提供一个基于PyTorch的CGAN代码框架。首先,让我们定义一些必要的库和参数:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
# Define hyperparameters
batch_size = 128
lr = 0.0002
z_dim = 100
num_epochs = 50
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```
接下来,我们定义生成器和判别器网络:
``` python
class Generator(nn.Module):
def __init__(self, z_dim=100, img_dim=784, hidden_dim=256):
super(Generator, self).__init__()
self.fc1 = nn.Linear(z_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, img_dim)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, z):
x = self.relu(self.fc1(z))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
class Discriminator(nn.Module):
def __init__(self, img_dim=784, hidden_dim=256):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(img_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
```
然后,我们定义损失函数和优化器:
``` python
criterion = nn.BCELoss()
G = Generator(z_dim).to(device)
D = Discriminator().to(device)
g_optimizer = optim.Adam(G.parameters(), lr=lr)
d_optimizer = optim.Adam(D.parameters(), lr=lr)
```
接下来,我们定义训练循环:
``` python
def train_GAN(dataloader, num_epochs):
G.train()
D.train()
for epoch in range(num_epochs):
for i, (real_imgs, _) in enumerate(dataloader):
real_imgs = real_imgs.to(device)
batch_size = real_imgs.size(0)
# Train discriminator
d_optimizer.zero_grad()
# Train on real data
real_labels = torch.ones(batch_size, 1).to(device)
real_outputs = D(real_imgs)
d_loss_real = criterion(real_outputs, real_labels)
# Train on fake data
z = torch.randn(batch_size, z_dim).to(device)
fake_imgs = G(z)
fake_labels = torch.zeros(batch_size, 1).to(device)
fake_outputs = D(fake_imgs)
d_loss_fake = criterion(fake_outputs, fake_labels)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
d_optimizer.step()
# Train generator
g_optimizer.zero_grad()
z = torch.randn(batch_size, z_dim).to(device)
fake_imgs = G(z)
fake_labels = torch.ones(batch_size, 1).to(device)
fake_outputs = D(fake_imgs)
g_loss = criterion(fake_outputs, fake_labels)
g_loss.backward()
g_optimizer.step()
if i % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}], Discriminator Loss: {:.4f}, Generator Loss: {:.4f}"
.format(epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))
```
最后,我们加载数据集并开始训练:
``` python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,))
])
train_dataset = MNIST(root='./data', train=True, download=True, transform=transform)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
train_GAN(train_dataloader, num_epochs)
```
这是一个简单的CGAN代码框架,你可以根据自己的需求进行修改和扩展。
阅读全文