params1 = xgb_cv() print(params1) bst1 = xgb.Booster() bst1.load_model('model3.xgb') pred1 = bst1.predict(xgb_test) dataDict1 = dep.to_dict() dataDict1['tc'] = pd.Series(pred1, index=list(range(0, 8313))).round(5) data1 = pd.DataFrame(dataDict1) data1.to_excel(r'1Predicted_S1_all_XGboost.xlsx', sheet_name='Predicted', index=True, index_label="index")
时间: 2024-02-22 21:57:23 浏览: 85
这段代码的作用是将 XGBoost 模型应用于测试集,并将预测结果保存到 Excel 文件中。
首先,通过 `xgb_cv()` 函数获取了一个 XGBoost 模型的最佳参数组合 `params1`。然后,通过 `xgb.Booster()` 函数创建一个空的 XGBoost 模型 `bst1`,并使用 `bst1.load_model()` 函数加载之前训练好的 XGBoost 模型,即 'model3.xgb' 文件。
接下来,通过 `bst1.predict()` 函数对测试集进行预测,并将预测结果保存到 `pred1` 变量中。然后,通过将预测结果转换为 Pandas DataFrame 格式,并将其与测试集的其他列一起保存到 Excel 文件中。
最后,将 Excel 文件保存到名为 '1Predicted_S1_all_XGboost.xlsx' 的文件中,其中第一个工作表的名称为 'Predicted',并将行索引保存为 'index'。请注意,此代码中使用了 Pandas 库和 XGBoost 库。如果您尚未安装这些库,请使用以下命令进行安装:
```
pip install pandas xgboost
```
相关问题
import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import xgboost as xgb import matplotlib.pyplot as plt import openpyxl # 导入数据集 df = pd.read_csv("/Users/mengzihan/Desktop/正式有血糖聚类前.csv") data=df.iloc[:,:35] target=df.iloc[:,-1] # 切分训练集和测试集 train_x, test_x, train_y, test_y = train_test_split(data,target,test_size=0.2,random_state=7) # xgboost模型初始化设置 dtrain=xgb.DMatrix(train_x,label=train_y) dtest=xgb.DMatrix(test_x) watchlist = [(dtrain,'train')] # booster: params={'booster':'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'max_depth':12, 'lambda':10, 'subsample':0.75, 'colsample_bytree':0.75, 'min_child_weight':2, 'eta': 0.025, 'seed':0, 'nthread':8, 'gamma':0.15, 'learning_rate' : 0.01} # 建模与预测:50棵树 bst=xgb.train(params,dtrain,num_boost_round=50,evals=watchlist) ypred=bst.predict(dtest) # 设置阈值、评价指标 y_pred = (ypred >= 0.5)*1 print ('Precesion: %.4f' %metrics.precision_score(test_y,y_pred)) print ('Recall: %.4f' % metrics.recall_score(test_y,y_pred)) print ('F1-score: %.4f' %metrics.f1_score(test_y,y_pred)) print ('Accuracy: %.4f' % metrics.accuracy_score(test_y,y_pred)) print ('AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)) ypred = bst.predict(dtest) print("测试集每个样本的得分\n",ypred) ypred_leaf = bst.predict(dtest, pred_leaf=True) print("测试集每棵树所属的节点数\n",ypred_leaf) ypred_contribs = bst.predict(dtest, pred_contribs=True) print("特征的重要性\n",ypred_contribs ) xgb.plot_importance(bst,height=0.8,title='影响糖尿病的重要特征', ylabel='特征') plt.rc('font', family='Arial Unicode MS', size=14) plt.show()
这段代码是使用XGBoost进行二分类任务的建模和预测,并输出了一些评价指标和特征重要性。下面是对代码的解释:
1. 导入必要的库:`pandas`用于数据处理,`sklearn`中的`metrics`模块用于评价指标,`train_test_split`用于划分训练集和测试集,`xgboost`用于建模,`matplotlib.pyplot`用于画图,`openpyxl`用于读取Excel文件。
2. 读取数据集:使用`pd.read_csv`读取CSV格式的数据集文件,并分别将特征和目标变量提取出来。
3. 划分训练集和测试集:使用`train_test_split`函数将数据集划分为训练集和测试集,其中`test_size=0.2`表示测试集占比为20%,`random_state=7`表示设置随机种子以保证可重复性。
4. 初始化xgboost模型设置:创建`DMatrix`对象,将训练集特征矩阵和目标变量转换为xgboost专用的数据格式。设置模型参数和超参数,例如使用GBtree作为基学习器、使用二分类逻辑回归作为目标函数、评价指标为AUC等。
5. 建模与预测:使用`xgb.train`函数训练xgboost模型,设定迭代次数为50,并在训练过程中输出训练集的性能指标。然后对测试集进行预测,得到预测概率值`ypred`。
6. 设置阈值、计算评价指标:将预测概率值转换为二分类的预测结果,并计算准确率、召回率、F1-score、精确度和AUC等评价指标,并输出结果。
7. 输出测试集每个样本的得分:输出测试集每个样本的预测得分。
8. 输出测试集每棵树所属的节点数:输出测试集每棵树所属的节点数。
9. 输出特征的重要性:输出特征的重要性,可以使用`xgb.plot_importance`函数绘制特征重要性图。
最后,通过`plt.show()`函数显示绘制的特征重要性图。
import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import xgboost as xgb import matplotlib.pyplot as plt # 导入数据集 df = pd.read_csv("./data/diabetes.csv") data=df.iloc[:,:8] target=df.iloc[:,-1] # 切分训练集和测试集 train_x, test_x, train_y, test_y = train_test_split(data,target,test_size=0.2,random_state=7) # xgboost模型初始化设置 dtrain=xgb.DMatrix(train_x,label=train_y) dtest=xgb.DMatrix(test_x) watchlist = [(dtrain,'train')] # booster: params={'booster':'gbtree', 'objective': 'binary:logistic', 'eval_metric': 'auc', 'max_depth':5, 'lambda':10, 'subsample':0.75, 'colsample_bytree':0.75, 'min_child_weight':2, 'eta': 0.025, 'seed':0, 'nthread':8, 'gamma':0.15, 'learning_rate' : 0.01} # 建模与预测:50棵树 bst=xgb.train(params,dtrain,num_boost_round=50,evals=watchlist) ypred=bst.predict(dtest) # 设置阈值、评价指标 y_pred = (ypred >= 0.5)*1 print ('Precesion: %.4f' %metrics.precision_score(test_y,y_pred)) print ('Recall: %.4f' % metrics.recall_score(test_y,y_pred)) print ('F1-score: %.4f' %metrics.f1_score(test_y,y_pred)) print ('Accuracy: %.4f' % metrics.accuracy_score(test_y,y_pred)) print ('AUC: %.4f' % metrics.roc_auc_score(test_y,ypred)) ypred = bst.predict(dtest) print("测试集每个样本的得分\n",ypred) ypred_leaf = bst.predict(dtest, pred_leaf=True) print("测试集每棵树所属的节点数\n",ypred_leaf) ypred_contribs = bst.predict(dtest, pred_contribs=True) print("特征的重要性\n",ypred_contribs ) xgb.plot_importance(bst,height=0.8,title='影响糖尿病的重要特征', ylabel='特征') plt.rc('font', family='Arial Unicode MS', size=14) plt.show()请问怎样设置这个代码的参数才合理,并且帮我分析一下哪里出了问题
根据您的代码,您正在使用XGBoost模型来预测糖尿病。在调整参数之前,让我们先分析一下代码中可能出现问题的地方。
1. 数据集切分:您使用了train_test_split函数将数据集划分为训练集和测试集。请确保数据集已经被正确加载,并且训练集和测试集的大小比例合理。
2. booster参数:您设置了一些XGBoost模型的参数,如'max_depth'、'lambda'、'subsample'等。这些参数的设置需要根据具体情况进行调整。例如,'max_depth'表示每棵树的最大深度,过大的值可能导致过拟合,过小的值可能导致欠拟合。建议您根据数据集的特点和实际需求进行调整。
3. 建模与预测:您使用xgb.train函数来训练模型,并使用bst.predict函数进行预测。请确保训练集和测试集的数据类型正确,并且模型训练过程没有报错。
4. 评价指标:您使用了多个评价指标来评估模型的性能,如准确率、召回率、F1-score等。请确保这些指标的计算正确,并且测试集的真实标签(test_y)与预测结果(y_pred)的格式一致。
根据您提供的代码片段,我无法确定具体出了哪些问题,因为缺少了部分代码。如果您可以提供完整的代码和数据集,我将能够更好地帮助您分析和调整参数。
另外,请注意,我是一个AI模型,我的回答仅基于对问题的理解和常识推理,并不能保证一定正确。对于复杂的问题和具体情况,请咨询专业人士或进一步研究相关文档。
阅读全文