python利用torch库,torch.nn库等,设计一个可以通过不同大小颗粒度的卷积神经网络
时间: 2024-11-06 19:17:09 浏览: 35
利用torch.nn实现二维卷积python代码
在Python中,利用PyTorch库(特别是torch和torch.nn库)构建一个可以处理不同大小颗粒度的卷积神经网络(Convolutional Neural Network,CNN),通常涉及以下几个步骤:
1. 导入所需模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义一个可调整粒度的卷积层模块(例如,通过动态图或混合精度支持):
```python
class AdaptiveConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1):
super(AdaptiveConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation)
self.pooling = nn.MaxPool2d(kernel_size=(kernel_size, kernel_size), stride=stride)
def forward(self, x, adaptive_kernel_size):
return self.pooling(F.conv2d(x, self.conv.weight, bias=self.conv.bias, stride=self.conv.stride,
padding=self.conv.padding, dilation=self.conv.dilation))
```
3. 设计主模型,其中包含一个或多个这样的自适应卷积层,可能还包含全连接层、池化层和批量归一化层:
```python
class ResNetLikeBlock(nn.Module):
def __init__(self, in_channels, out_channels, dropout_rate=0.5):
super(ResNetLikeBlock, self).__init__()
self.conv1 = AdaptiveConv(in_channels, out_channels // 2, kernel_size=3, stride=1)
self.bn1 = nn.BatchNorm2d(out_channels // 2)
self.relu1 = nn.ReLU()
self.conv2 = AdaptiveConv(out_channels // 2, out_channels, kernel_size=3, stride=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x, kernel_size):
residual = x
out = self.conv1(x, kernel_size)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out, kernel_size)
out = self.bn2(out)
if residual.shape == out.shape:
out += residual
else:
out = self.dropout(out) + residual
return out
# 示例模型结构
class CNNWithAdaptiveConv(nn.Module):
def __init__(self, num_layers, input_shape, output_classes):
super(CNNWithAdaptiveConv, self).__init__()
channels = [64, 128, 256]
self.adaptive_convs = nn.ModuleList([AdaptiveConv(input_shape[0], c, 3) for c in channels])
self.resblocks = nn.Sequential(*[ResNetLikeBlock(channels[i], channels[i+1]) for i in range(len(channels)-1)])
self.fc = nn.Linear(channels[-1] * (input_shape[1] // 8) ** 2, output_classes)
def forward(self, x, kernel_sizes):
x = [conv(x, kernel_size) for conv, kernel_size in zip(self.adaptive_convs, kernel_sizes)]
x = torch.cat(x, dim=1)
x = self.resblocks(x, kernel_sizes)
x = x.mean(dim=[2, 3]) # Global average pooling
x = self.fc(x)
return x
```
在这个例子中,`kernel_sizes`是一个列表,表示每个自适应卷积层应该使用的可变大小。
阅读全文