已有训练集和测试集的.csv文件,写一个ARMA卷积图卷积神经网络的python的torch代码
时间: 2023-12-03 07:44:57 浏览: 186
首先,需要导入必要的库:
```python
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
```
接下来,读取.csv文件:
```python
train_data = pd.read_csv('train_data.csv')
test_data = pd.read_csv('test_data.csv')
```
定义自定义数据集类,继承自Dataset:
```python
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data.to_numpy()
self.len = data.shape[0]
def __getitem__(self, index):
sample = {'x': self.data[index, :-1], 'y': self.data[index, -1]}
return sample
def __len__(self):
return self.len
```
接下来,定义ARMA卷积图卷积神经网络模型:
```python
class ARMAConvNet(nn.Module):
def __init__(self):
super(ARMAConvNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2)
self.conv2 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
self.fc1 = nn.Linear(in_features=64*8, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = x.view(-1, 64*8)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
```
定义训练函数:
```python
def train(model, optimizer, criterion, train_loader):
model.train()
train_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data['x'], data['y']
inputs = inputs.float().unsqueeze(1)
labels = labels.float().unsqueeze(1)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
return train_loss
```
定义测试函数:
```python
def test(model, criterion, test_loader):
model.eval()
test_loss = 0.0
with torch.no_grad():
for i, data in enumerate(test_loader):
inputs, labels = data['x'], data['y']
inputs = inputs.float().unsqueeze(1)
labels = labels.float().unsqueeze(1)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
test_loss /= len(test_loader.dataset)
return test_loss
```
初始化模型、优化器和损失函数:
```python
model = ARMAConvNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
```
初始化训练集和测试集:
```python
train_dataset = CustomDataset(train_data)
test_dataset = CustomDataset(test_data)
```
初始化训练集和测试集的DataLoader:
```python
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
```
开始训练:
```python
num_epochs = 100
for epoch in range(num_epochs):
train_loss = train(model, optimizer, criterion, train_loader)
test_loss = test(model, criterion, test_loader)
print(f'Epoch {epoch+1}: Train Loss = {train_loss:.4f}, Test Loss = {test_loss:.4f}')
```
最后,根据需要保存模型:
```python
torch.save(model.state_dict(), 'model.pth')
```
阅读全文