已有训练集1000*32、训练标签1000*1和测试集100*32、测试标签100*1的.csv文件,写一个ARMA卷积图卷积神经网络的python的torch代码
时间: 2023-11-26 10:06:40 浏览: 70
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
```
接着,我们需要读取训练集和测试集的csv文件,并将数据转换为PyTorch张量:
```python
train_data = pd.read_csv("train_data.csv")
train_labels = pd.read_csv("train_labels.csv")
test_data = pd.read_csv("test_data.csv")
test_labels = pd.read_csv("test_labels.csv")
train_data = torch.tensor(train_data.values)
train_labels = torch.tensor(train_labels.values)
test_data = torch.tensor(test_data.values)
test_labels = torch.tensor(test_labels.values)
```
然后,我们可以定义一个ARMA卷积层:
```python
class ARMAConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, p, q):
super(ARMAConv1d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.p = p
self.q = q
self.ar_coef = nn.Parameter(torch.randn(out_channels, p))
self.ma_coef = nn.Parameter(torch.randn(out_channels, q))
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size)
def forward(self, x):
b, c, l = x.shape
ar_coef = self.ar_coef.unsqueeze(2).expand(-1, -1, self.kernel_size)
ma_coef = self.ma_coef.unsqueeze(2).expand(-1, -1, self.kernel_size)
for i in range(self.kernel_size, l):
ar_term = torch.einsum('ijk,bck->bcij', ar_coef, x[:, :, i - self.kernel_size:i])
ma_term = torch.einsum('ijk,bck->bcij', ma_coef, x[:, :, i - self.kernel_size:i])
x[:, :, i] = torch.relu(self.conv(x[:, :, i-self.kernel_size:i]) + ar_term + ma_term)
return x
```
该层包含一个ARMA滤波器和一个一维卷积层。在前向传递过程中,我们将ARMA滤波器应用于输入数据,然后将其送入卷积层中。
接下来,我们可以定义一个包含两个ARMA卷积层和一个全连接层的神经网络:
```python
class ARMACNN(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, p, q, hidden_units):
super(ARMACNN, self).__init__()
self.conv1 = ARMAConv1d(in_channels, out_channels, kernel_size, p, q)
self.conv2 = ARMAConv1d(out_channels, out_channels, kernel_size, p, q)
self.fc = nn.Linear(out_channels, hidden_units)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.mean(dim=2)
x = self.fc(x)
return x
```
最后,我们可以定义一些超参数和训练过程:
```python
in_channels = 32
out_channels = 64
kernel_size = 5
p = 2
q = 2
hidden_units = 10
learning_rate = 0.001
num_epochs = 100
model = ARMACNN(in_channels, out_channels, kernel_size, p, q, hidden_units)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
optimizer.zero_grad()
outputs = model(train_data.float())
loss = criterion(outputs, train_labels.squeeze().long())
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
with torch.no_grad():
correct = 0
total = 0
outputs = model(test_data.float())
_, predicted = torch.max(outputs.data, 1)
total = test_labels.size(0)
correct = (predicted == test_labels.squeeze().long()).sum().item()
print('Accuracy of the network on the {} test samples: {} %'.format(total, 100 * correct / total))
```
这段代码中,我们使用Adam优化器和交叉熵损失函数进行训练,并在测试集上计算模型的准确度。
注意,这里我们需要将数据转换为浮点型张量,以便能够在模型中进行计算。
完整代码如下:
阅读全文