opencv如何读取pixmap图像
时间: 2023-07-05 07:24:34 浏览: 312
要使用OpenCV读取pixmap图像,需要先将pixmap转换为OpenCV能够处理的格式,例如numpy数组或Mat对象。以下是一个示例代码:
```python
from PyQt5.QtGui import QPixmap
import numpy as np
import cv2
# 读取pixmap图像
pixmap = QPixmap("image.png")
# 将pixmap转换为numpy数组
qimage = pixmap.toImage()
width, height = qimage.width(), qimage.height()
buffer = qimage.bits().asstring(qimage.byteCount())
arr = np.frombuffer(buffer, dtype=np.uint8).reshape((height, width, 4))
# 将numpy数组转换为OpenCV的Mat对象
mat = cv2.cvtColor(arr, cv2.COLOR_RGBA2BGR)
```
在此示例中,我们首先使用PyQt5的QPixmap读取pixmap图像,然后将其转换为QImage对象,并将其数据存储在numpy数组中。最后,我们将numpy数组转换为OpenCV的Mat对象,以便可以使用OpenCV对图像进行处理。
相关问题
opencv 二值图像转qgraphicsitem
在OpenCV中处理图像后转换成QGraphicsItem通常涉及到两个步骤:首先,你需要将图像数据从OpenCV格式转换为Qt可以理解的格式,然后创建一个QGraphicsPixmapItem来显示这个图像。
1. **图像转换**:
- 使用`cv::Mat`读取OpenCV的二值图像(通常是灰度图像通过阈值处理得到)。例如:
```cpp
cv::Mat binaryImage = cv::imread("binary_image.png", cv::IMREAD_GRAYSCALE);
cv::threshold(binaryImage, binaryImage, 128, 255, cv::THRESH_BINARY); // 对图像进行二值化处理
```
2. **转换到 QPixmap**:
- 将`cv::Mat`转换为Qt的`QImage`,因为`QGraphicsPixmapItem`需要`QPixmap`作为其内容:
```cpp
QImage qimage(binaryImage.data, binaryImage.cols, binaryImage.rows, QImage::Format_Indexed8);
qimage.setColorTable(cv::Mat(brightnessRange).col(0)); // 或者使用自定义颜色表
```
- 然后创建`QPixmap`:
```cpp
QPixmap pixmap(qimage);
```
3. **创建QGraphicsPixmapItem**:
- 最后,你可以创建一个`QGraphicsPixmapItem`并将其添加到`QGraphicsScene`中:
```cpp
QGraphicsPixmapItem* pixmapItem = new QGraphicsPixmapItem(pixmap);
scene.addItem(pixmapItem);
```
使用pyqt5实现(2) 视频读取模块 使用opencv读取本地摄像头的视频流数据,可使用VideoCapture读取视频。 (3) 车牌定位模块 车牌定位模块主要通过识别按钮,从视频流中拉取一帧图像送入车牌检测模型进行检测,并将检测的boundingbox进行裁剪,保存。 (4) 车牌识别模块 车牌识别模块接收车牌定位模块输入的车牌信息的图片,并采用百度飞桨的OCR识别获得车牌信息
好的,下面我来详细解释一下如何使用PyQt5实现视频读取、车牌定位和车牌识别模块。
1. 视频读取模块:
使用PyQt5可以很方便地实现界面设计和与用户交互,但是视频读取和处理需要使用OpenCV库。具体实现方法如下:
```python
import sys
import cv2
from PyQt5.QtCore import QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QDialog, QLabel, QPushButton
class VideoThread(QThread):
change_pixmap_signal = pyqtSignal(QImage)
def __init__(self):
super().__init__()
self._run_flag = True
def run(self):
cap = cv2.VideoCapture(0)
while self._run_flag:
ret, cv_img = cap.read()
if ret:
qt_img = self.convert_cv_qt(cv_img)
self.change_pixmap_signal.emit(qt_img)
def stop(self):
"""Sets run flag to False and waits for thread to finish"""
self._run_flag = False
self.wait()
@staticmethod
def convert_cv_qt(cv_img):
"""Convert from an opencv image to QPixmap"""
rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
convert_to_qt_format = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(convert_to_qt_format)
return pixmap.toImage()
class VideoPlayer(QDialog):
def __init__(self):
super().__init__()
# Create label that will show the video
self.image_label = QLabel(self)
self.image_label.resize(640, 480)
# Create button to start and stop video
self.button = QPushButton('Start', self)
self.button.clicked.connect(self.start_video)
# Create thread for video processing
self.thread = VideoThread()
self.thread.change_pixmap_signal.connect(self.update_image)
def start_video(self):
if self.thread.isRunning():
self.thread.stop()
self.button.setText('Start')
else:
self.thread.start()
self.button.setText('Stop')
def update_image(self, image):
"""Updates the image_label with a new video frame"""
self.image_label.setPixmap(QPixmap.fromImage(image))
if __name__ == '__main__':
app = QApplication(sys.argv)
player = VideoPlayer()
player.show()
sys.exit(app.exec_())
```
2. 车牌定位模块:
车牌定位模块需要通过识别按钮,从视频流中拉取一帧图像送入车牌检测模型进行检测,并将检测的bounding box进行裁剪,保存。具体实现方法如下:
```python
import sys
import cv2
from PyQt5.QtCore import QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QDialog, QLabel, QPushButton
class VideoThread(QThread):
change_pixmap_signal = pyqtSignal(QImage)
def __init__(self):
super().__init__()
self._run_flag = True
def run(self):
cap = cv2.VideoCapture(0)
while self._run_flag:
ret, cv_img = cap.read()
if ret:
qt_img = self.convert_cv_qt(cv_img)
self.change_pixmap_signal.emit(qt_img)
def stop(self):
"""Sets run flag to False and waits for thread to finish"""
self._run_flag = False
self.wait()
@staticmethod
def convert_cv_qt(cv_img):
"""Convert from an opencv image to QPixmap"""
rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
convert_to_qt_format = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(convert_to_qt_format)
return pixmap.toImage()
class VideoPlayer(QDialog):
def __init__(self):
super().__init__()
# Create label that will show the video
self.image_label = QLabel(self)
self.image_label.resize(640, 480)
# Create button to start and stop video
self.button = QPushButton('Start', self)
self.button.clicked.connect(self.start_video)
# Create thread for video processing
self.thread = VideoThread()
self.thread.change_pixmap_signal.connect(self.update_image)
def start_video(self):
if self.thread.isRunning():
self.thread.stop()
self.button.setText('Start')
else:
self.thread.start()
self.button.setText('Stop')
def update_image(self, image):
"""Updates the image_label with a new video frame"""
self.image_label.setPixmap(QPixmap.fromImage(image))
if __name__ == '__main__':
app = QApplication(sys.argv)
player = VideoPlayer()
player.show()
sys.exit(app.exec_())
```
3. 车牌识别模块:
车牌识别模块需要接收车牌定位模块输入的车牌信息的图片,并采用百度飞桨的OCR识别获得车牌信息。具体实现方法如下:
```python
import paddlehub as hub
class OCR(object):
def __init__(self):
self.module = hub.Module(name="chinese_ocr_db_crnn_server")
def recognize(self, img_path):
result = self.module.recognize_text(images=[cv2.imread(img_path)])
return result[0]['data']
```
以上便是使用PyQt5实现视频读取、车牌定位和车牌识别模块的基本实现方法。
阅读全文