pandas.loc实现筛切片操作按照步长为2取

时间: 2024-02-12 08:06:04 浏览: 22
您可以使用以下代码实现按步长为2筛选和切片操作: ```python import pandas as pd # 创建一个DF df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]}) # 按步长为2筛选和切片操作 result = df.loc[::2, :] print(result) ``` 在上面的代码中,`::2` 表示按步长为2进行筛选和切片操作。其中第一个冒号表示从头开始,第二个冒号表示到尾结束,最后一个数字2表示步长为2。这段代码会输出以下结果: ``` A B 0 1 6 2 3 8 4 5 10 ``` 这里我们使用了 `loc` 函数,它可以根据行标签和列标签进行数据筛选和切片操作。在本例中,我们只使用了行标签,所以列标签部分用了 `:` 表示全部列。
相关问题

wavelet_df.loc[i] = energy_values发生报错:发生异常: ValueError cannot set a row with mismatched columns File "/Users/dingfengyan/工作/项目开发/哈理工/批量导出功能/binzcsv+feature.py", line 150, in <module> wavelet_df.loc[i] = energy_values ~~~~~~~~~~~~~~^^^ ValueError: cannot set a row with mismatched columns

这个报错是因为在设置`wavelet_df.loc[i]`的时候,`energy_values`的长度与DataFrame的列数不匹配。可能是因为`energy_values`的长度与窗口数量不一致导致的。请确保`energy_values`的长度与窗口数量相同,并且DataFrame的列数已经正确初始化。你可以尝试以下修改: ```python import os import struct import pandas as pd import numpy as np import pywt # 定义窗口大小和步长 window_size = 100 step_size = 50 # 获取当前目录路径 current_dir = os.getcwd() # 创建原始csv目录 raw_csv_dir = os.path.join(current_dir, '原始csv') if not os.path.exists(raw_csv_dir): os.makedirs(raw_csv_dir) # 创建时频域特征csv目录 feature_csv_dir = os.path.join(current_dir, '时频域特征csv目录') if not os.path.exists(feature_csv_dir): os.makedirs(feature_csv_dir) def read_bin_file(file_path): # 打开bin文件并读取数据 with open(file_path, 'rb') as f: data = f.read() return data def convert_to_float(data): # 将每8个字节转为浮点数 floats = [] for i in range(0, len(data), 8): float_val = struct.unpack('f', data[i:i+4])[0] floats.append(float_val) return floats def calculate_statistics(window_data): # 计算统计指标和时频域参数 mean_value = np.mean(window_data) var_value = np.var(window_data) rms_value = np.sqrt(np.mean(np.square(window_data))) skewness = pd.Series(window_data).skew() kurtosis = pd.Series(window_data).kurt() crest_factor = np.max(np.abs(window_data)) / rms_value peak_factor = np.max(window_data) / rms_value impulse_factor = np.max(np.abs(window_data)) / np.mean(np.abs(window_data)) margin_factor = np.max(np.abs(window_data)) / np.std(window_data) return mean_value, var_value, rms_value, skewness, kurtosis, crest_factor, peak_factor, impulse_factor, margin_factor def calculate_wavelet_energy(window_data): # 计算小波能量值 coeffs = pywt.wavedec(window_data, 'db4', level=16) energy_values = [np.sum(np.square(coeff)) for coeff in coeffs] return energy_values # 遍历当前目录及子目录下的所有bin文件 for root, dirs, files in os.walk(current_dir): for file in files: if file.endswith('.bin'): bin_file_path = os.path.join(root, file) # 读取bin文件 bin_data = read_bin_file(bin_file_path) # 转换为浮点数 floats = convert_to_float(bin_data) # 创建DataFrame用于存储数据 df = pd.DataFrame(columns=['1', '2', '3']) # 将数据按顺序写入DataFrame的列中 df['1'] = floats[::3] df['2'] = floats[1::3] df['3'] = floats[2::3] # 将DataFrame保存为原始csv文件 csv_file_path = os.path.join(raw_csv_dir, f'{file}.csv') df.to_csv(csv_file_path, index=False) # 创建新的DataFrame用于存储时频域特征数据 feature_df = pd.DataFrame(columns=[f'{file}_mean', f'{file}_var', f'{file}_rms', f'{file}_skew', f'{file}_kurtosis', f'{file}_crest', f'{file}_peak', f'{file}_impulse', f'{file}_margin']) # 创建新的DataFrame用于存储小波特征数据 wavelet_df = pd.DataFrame(columns=[f'{file}_energy_{i}' for i in range(1, 17)]) # 对每列进行窗口切片,并计算统计指标和时频域参数 for col in df.columns: col_data = df[col] num_windows = (len(col_data) - window_size) // step_size + 1 for i in range(num_windows): window_data = col_data[i*step_size : i*step_size + window_size] # 计算统计指标和时频域参数 result = calculate_statistics(window_data) # 将结果添加到时频域特征DataFrame feature_df.loc[i] = result # 计算小波能量值 energy_values = calculate_wavelet_energy(window_data) # 将结果添加到小波特征DataFrame wavelet_df.loc[i, [f'{file}_energy_{j+1}' for j in range(len(energy_values))]] = energy_values # 将时频域特征数据保存为新的csv文件 feature_csv_file_path = os.path.join(feature_csv_dir, f'{file}.csv') feature_df.to_csv(feature_csv_file_path, index=False) # 将小波特征数据保存为新的csv文件 wavelet_csv_file_path = os.path.join(feature_csv_dir, f'{file}_wavelet.csv') wavelet_df.to_csv(wavelet_csv_file_path, index=False) print("时频域特征csv文件和小波特征csv文件生成完成") ``` 在上述代码中,我修改了计算小波能量值的部分,使用`wavelet_df.loc[i, [f'{file}_energy_{j+1}' for j in range(len(energy_values))]]`来设置每行的值。这样可以确保`energy_values`的长度与DataFrame的列数匹配。请注意在保存小波特征数据的csv文件时,我将文件名命名为`{file}_wavelet.csv`,以区分时频域特征数据的csv文件。

读取当前目录下名字为原始csv文件夹的csv,将csv文件的每列按窗口切片,计算均值、方差、小波1-16的能量值,生成csv文件后存储到名字为特征csv文件目录下,并按原csv文件名+列命名

你可以使用Python的pandas库和os库来完成这个任务。以下是一个示例代码: ```python import os import pandas as pd import numpy as np import pywt # 定义窗口大小和步长 window_size = 100 step_size = 50 # 获取当前目录路径 current_dir = os.getcwd() # 创建特征csv文件目录 feature_dir = os.path.join(current_dir, '特征csv文件目录') if not os.path.exists(feature_dir): os.makedirs(feature_dir) # 获取当前目录下名字为原始csv文件夹的csv文件 csv_files = [file for file in os.listdir(current_dir) if os.path.isdir(file) and file == '原始csv文件夹'] if len(csv_files) == 0: print("未找到名为'原始csv文件夹'的文件夹") exit() csv_dir = os.path.join(current_dir, csv_files[0]) # 遍历原始csv文件夹中的csv文件 for file in os.listdir(csv_dir): # 读取csv文件 df = pd.read_csv(os.path.join(csv_dir, file)) # 获取原始数据的列名 column_names = df.columns # 创建新的DataFrame用于存储结果 result_df = pd.DataFrame(columns=[f'{file}_{col}_mean' for col in column_names] + [f'{file}_{col}_var' for col in column_names] + [f'{file}_{col}_energy' for col in column_names]) # 对每列进行窗口切片、计算统计指标和能量值 for col in column_names: col_data = df[col] num_windows = (len(col_data) - window_size) // step_size + 1 for i in range(num_windows): window_data = col_data[i*step_size : i*step_size + window_size] # 计算均值和方差 mean_value = np.mean(window_data) var_value = np.var(window_data) # 计算小波能量值 coeffs = pywt.wavedec(window_data, 'db4', level=16) energy_values = [np.sum(np.square(coeff)) for coeff in coeffs] # 将结果添加到新的DataFrame row = [mean_value] + [var_value] + energy_values result_df.loc[i] = row # 将结果保存为新的csv文件 result_file = f'{file}_result.csv' result_path = os.path.join(feature_dir, result_file) result_df.to_csv(result_path, index=False) print("特征csv文件生成完成") ``` 以上代码会在当前目录下查找名为'原始csv文件夹'的文件夹,读取其中的csv文件,并对每列进行窗口切片、计算均值、方差和小波1-16的能量值。然后将结果保存到名为'特征csv文件目录'的文件夹下,并按原csv文件名+列命名。请确保在当前目录下存在'原始csv文件夹',并将'特征csv文件目录'替换为你想要存储特征csv文件的目录名。

相关推荐

最新推荐

recommend-type

Java swing + socket + mysql 五子棋网络对战游戏FiveChess.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

纯C语言实现的控制台有禁手五子棋(带AI)Five-to-five-Renju.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

setuptools-57.1.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

setuptools-59.1.1.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

空载损耗计算软件.zip

空载损耗计算软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。