l=1068; data=csvread('D:/DATA/plaid2017/2017/1068.csv');matlab中如何用i来命名data

时间: 2024-01-09 15:05:08 浏览: 123
RAR

matlab.rar_I/O

在MATLAB中,可以使用动态变量名来命名变量。可以在变量名后加上一个数字或字符串,以动态生成新的变量名。例如,可以使用以下代码来生成名为`data1`、`data2`、`data3`、...的变量: ``` for i = 1:10 varname = ['data', num2str(i)]; eval([varname, ' = csvread(''D:/DATA/plaid2017/2017/', num2str(l), '.csv'');']); end ``` 在这个示例中,我们使用`eval()`函数来执行动态生成的命令,将读取的CSV数据存储在名为`data1`、`data2`、`data3`、...的变量中。注意,`num2str()`函数将数字转换为字符串,`['data', num2str(i)]`将字符串连接起来以生成变量名。
阅读全文

相关推荐

%% 参数优化图 %% 选择策略 strategysn = 3; strategyname_cell = { 'breakH' 'breakL' 'MAcross1' 'MAcross2' 'CL' 'crossB' '...' '...' '...' }; strategyname = strategyname_cell{ strategysn }; %% 选择时间段 begintime = 20100104; % YYYYMMDD or YYYYMMDDHHMM endtime = 20210531; % YYYYMMDD or YYYYMMDDHHMM %% 读取数据;确定开始时间与结束时间对应坐标 % 选择交易品种 sn = 1; % 选择品种序列号 Codescell = { '000001'; '000016'; '000300'; '000905'; '399005'; '399006'; 'RB'; 'HC'; 'J'; 'JM'; 'I'; 'ZC'; 'RU'; 'SP'; 'FG'; 'CU'; 'NI'; 'AL'; 'ZN'; 'FU'; 'BU'; 'SC'; 'AU'; 'AG'; 'AP'; 'SR'; 'CF'; 'JD'; 'P'; 'M'; 'RM'; 'Y'; 'OI'; 'MA'; 'PP'; 'L'; 'V'; 'TA'; 'EG' }; % 品种代码表 pname = Codescell{sn,:} % 根据序列号查表得到品种代码 % 读取数据文件 filename = [ 'Data\Daily\' pname '.csv' ]; TOHLCV = csvread( filename , 1 ); % 核对时间轴,找到给定开始时间与结束时间对应的坐标 beginidx = find( TOHLCV(:,1) == begintime ); endidx = find( TOHLCV(:,1) == endtime ); %% 回测策略 % 显示品种 disp( [ '交易品种: ' pname ] ); % 根据开始与结束时间的对应坐标截取矩阵 TOHLCV = TOHLCV( beginidx : endidx , : ); innan = find( ~isnan(TOHLCV(:,5)) ,1 ); TOHLCV = TOHLCV( innan : end , : ); begintime = TOHLCV(1,1); % 更新begintime % 模拟交易 inicash = 10^7; SI = TOHLCV(:,5) / TOHLCV(1,5); N1 = 10:10:60; % 进场信号探测窗口周期 N2 = 0.5:0.05:1.2; % 出场信号探测窗口周期 b_a = 1; % 信号探测使用高低点 (取值1)或收盘价 (取值2) AR = nan( numel(N1) , numel(N2) ); % 年化回报率矩阵 Sharpe = nan( numel(N1) , numel(N2) ); % 夏普比矩阵 Calmar = nan( numel(N1) , numel(N2) ); % 卡玛比矩阵 for i = 1 : numel(N1) for j = 1 : numel(N2) paramcell = { [N1(i) N2(j) b_a] [N1(i) N2(j) b_a] }; [ Capital , H ] = feval( [ 'Strategy_' strategyname ] , TOHLCV , paramcell , inicash ); Eqty = Capital / inicash; % 净值曲线 equitypfm = performmetrics( Eqty , 1 , SI' ); AR(i,j) = equitypfm(1); Sharpe(i,j) = equitypfm(1) / equitypfm(5); Calmar(i,j) = equitypfm(1) / equitypfm(2); end end [ X , Y ] = meshgrid( N1 , N2 ) ; Z = AR; % Z = (AR+Sharpe+Calmar) / 3; surf(X',Y',Z) xlabel('N1') ylabel('N2')解释代码

iris = load('C:\Users\86187\Desktop\Iris (1).csv'); % 导入鸢尾花数据集 train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)]; train_labels = [ones(40,1); 2*ones(40,1); 3*ones(40,1)]; test_data = [meas(41:50,:); meas(91:100,:); meas(141:150,:)]; test_labels = [ones(10,1); 2*ones(10,1); 3*ones(10,1)]; mu1 = mean(train_data(train_labels==1,:)); sigma1 = var(train_data(train_labels==1,:)); mu2 = mean(train_data(train_labels==2,:)); sigma2 = var(train_data(train_labels==2,:)); mu3 = mean(train_data(train_labels==3,:)); sigma3 = var(train_data(train_labels==3,:)); pred_labels = zeros(size(test_labels)); for i=1:size(test_data,1) p1 = normpdf(test_data(i,:), mu1, sqrt(sigma1)); p2 = normpdf(test_data(i,:), mu2, sqrt(sigma2)); p3 = normpdf(test_data(i,:), mu3, sqrt(sigma3)); [~, idx] = max([p1,p2,p3]); pred_labels(i) = idx; end tp = sum((test_labels==1) & (pred_labels==1)); fp = sum((test_labels~=1) & (pred_labels==1)); fn = sum((test_labels==1) & (pred_labels~=1)); precision1 = tp / (tp + fp); recall1 = tp / (tp + fn); f1_score1 = 2 * precision1 * recall1 / (precision1 + recall1); tp = sum((test_labels==2) & (pred_labels==2)); fp = sum((test_labels~=2) & (pred_labels==2)); fn = sum((test_labels==2) & (pred_labels~=2)); precision2 = tp / (tp + fp); recall2 = tp / (tp + fn); f1_score2 = 2 * precision2 * recall2 / (precision2 + recall2); tp = sum((test_labels==3) & (pred_labels==3)); fp = sum((test_labels~=3) & (pred_labels==3)); fn = sum((test_labels==3) & (pred_labels~=3)); precision3 = tp / (tp + fp); recall3 = tp / (tp + fn); f1_score3 = 2 * precision3 * recall3 / (precision3 + recall3);中函数或变量 'meas' 无法识别。 出错 Untitled (line 2) train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)];怎么解决

function m = csvread(filename, r, c, rng) %CSVREAD Read a comma separated value file. % M = CSVREAD('FILENAME') reads a comma separated value formatted file % FILENAME. The result is returned in M. The file can only contain % numeric values. % % M = CSVREAD('FILENAME',R,C) reads data from the comma separated value % formatted file starting at row R and column C. R and C are zero- % based so that R=0 and C=0 specifies the first value in the file. % % M = CSVREAD('FILENAME',R,C,RNG) reads only the range specified % by RNG = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of % the data to be read and (R2,C2) is the lower-right corner. RNG % can also be specified using spreadsheet notation as in RNG = 'A1..B7'. % % CSVREAD fills empty delimited fields with zero. Data files where % the lines end with a comma will produce a result with an extra last % column filled with zeros. % % See also CSVWRITE, DLMREAD, DLMWRITE, LOAD, TEXTSCAN. % Copyright 1984-2015 The MathWorks, Inc. % Validate input args narginchk(1,Inf); % Get Filename if ~matlab.internal.strfun.ischarlike(filename) error(message('MATLAB:csvread:FileNameMustBeString')); end filename = char(filename); % Make sure file exists if exist(filename,'file') ~= 2 error(message('MATLAB:csvread:FileNotFound')); end % % Call dlmread with a comma as the delimiter % if nargin < 2 r = 0; end if nargin < 3 c = 0; end if nargin < 4 m=dlmread(filename, ',', r, c); else m=dlmread(filename, ',', r, c, rng); end错误使用 csvread (line 35) 未找到文件。如何解决

这段代码有错误,我应该更改成什么样子%% I. 清空环境变量 clear all clc %% II. 训练集/测试集产生 %% % 1. 导入数据 data = csvread("results.csv"); train_ratio = 0.8; [m,n] = size(data); %% % 2. 产生训练集和测试集 temp = randperm(size(data,1));%size(a,1)行数,size(aa,2)列数产生随机数列 % 训练集 P_train = data(temp(1:train_ratio*m),1:58)';%单引号矩阵转置 % T_train = zeros(58,train_ratio*m); T_train = data(temp(1:train_ratio*m),59:62)'; %T_train(1:4,:) = data(temp(1:train_ratio*m),59:62)'; % 测试集 P_test = data(temp(train_ratio*m+1:end),1:58)'; T_test = data(temp(train_ratio*m+1:end),59:62)'; N = size(P_test,2); %% III. 数据归一化 [p_train, ps_input] = mapminmax(P_train,0,1);%归一化训练数据,线性? p_test = mapminmax('apply',P_test,ps_input);%测试数据同样规则归一化 [t_train, ps_output] = mapminmax(T_train,0,1); %%CNN架构 layers = [ imageInputLayer([58 1]) %输入层参数设置 %第一层卷积层和池化层 convolution2dLayer(4,16,'Padding','same') %[64,1]是卷积核大小,128是个数 %对于一维数据,卷积核第二个参数为1就行了,这样就是一维卷积 reluLayer %relu激活函数 maxPooling2dLayer(2,'Stride',2) %第二层卷积层和池化层 convolution2dLayer(4,16,'Padding','same') reluLayer %relu激活函数 maxPooling2dLayer(2,'Stride',2) %两层全连接层 fullyConnectedLayer(20) % 20个全连接层神经元 reluLayer %relu激活函数 fullyConnectedLayer(4) % 输出层神经元个数 softmaxLayer regressionLayer%添加回归层,用于计算损失值 ]; % 定义训练选项 options = trainingOptions('adam', ...%优化方法:sgdm、adam等 'MaxEpochs',100, ... 'MiniBatchSize',20, ... 'InitialLearnRate',0.001, ... 'GradientThreshold',1, ... 'Verbose',true,... 'ExecutionEnvironment','multi-gpu',...% GPU训练 'Plots','training-progress',...%'none'代表不显示训练过程 'ValidationData',{p_test, T_test});%验证集 %训练模型 net = trainNetwork(p_train',t_train',layers,options);

最新推荐

recommend-type

MATLAB封装后importdata函数报错

6. MATLAB 的数据读取:MATLAB 提供了多种方式来读取数据,包括使用importdata 函数、xlsread 函数、csvread 函数等。 MATLAB 的importdata 函数是一个非常有用的函数,可以读取多种格式的文件,但在封装成exe 时...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001