iris = load('C:\Users\86187\Desktop\Iris (1).csv'); % 导入鸢尾花数据集 train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)]; train_labels = [ones(40,1); 2*ones(40,1); 3*ones(40,1)]; test_data = [meas(41:50,:); meas(91:100,:); meas(141:150,:)]; test_labels = [ones(10,1); 2*ones(10,1); 3*ones(10,1)]; mu1 = mean(train_data(train_labels==1,:)); sigma1 = var(train_data(train_labels==1,:)); mu2 = mean(train_data(train_labels==2,:)); sigma2 = var(train_data(train_labels==2,:)); mu3 = mean(train_data(train_labels==3,:)); sigma3 = var(train_data(train_labels==3,:)); pred_labels = zeros(size(test_labels)); for i=1:size(test_data,1) p1 = normpdf(test_data(i,:), mu1, sqrt(sigma1)); p2 = normpdf(test_data(i,:), mu2, sqrt(sigma2)); p3 = normpdf(test_data(i,:), mu3, sqrt(sigma3)); [~, idx] = max([p1,p2,p3]); pred_labels(i) = idx; end tp = sum((test_labels==1) & (pred_labels==1)); fp = sum((test_labels~=1) & (pred_labels==1)); fn = sum((test_labels==1) & (pred_labels~=1)); precision1 = tp / (tp + fp); recall1 = tp / (tp + fn); f1_score1 = 2 * precision1 * recall1 / (precision1 + recall1); tp = sum((test_labels==2) & (pred_labels==2)); fp = sum((test_labels~=2) & (pred_labels==2)); fn = sum((test_labels==2) & (pred_labels~=2)); precision2 = tp / (tp + fp); recall2 = tp / (tp + fn); f1_score2 = 2 * precision2 * recall2 / (precision2 + recall2); tp = sum((test_labels==3) & (pred_labels==3)); fp = sum((test_labels~=3) & (pred_labels==3)); fn = sum((test_labels==3) & (pred_labels~=3)); precision3 = tp / (tp + fp); recall3 = tp / (tp + fn); f1_score3 = 2 * precision3 * recall3 / (precision3 + recall3);中函数或变量 'meas' 无法识别。 出错 Untitled (line 2) train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)];怎么解决
时间: 2024-03-26 12:41:13 浏览: 95
这个错误通常是因为没有导入正确的数据文件导致的。在这个脚本中,没有看到导入数据的代码行。请确认您已经正确导入了名为"Iris (1).csv"的数据文件,并将其保存在'C:\Users\86187\Desktop\'路径下。如果数据文件的名称或路径不正确,那么您需要相应地修改代码行2和3。
另外,您可能需要使用内置的`csvread`或`readtable`函数来正确读取CSV文件,而不是使用`load`函数。请尝试以下代码来导入CSV数据:
```matlab
data = readtable('C:\Users\86187\Desktop\Iris (1).csv');
meas = table2array(data(:,1:4));
```
这将把您的CSV数据文件读入一个表中,并将其转换为一个矩阵`meas`,其中包含所有的测量值。您可以根据需要修改代码以适应这个新的数据结构。
相关问题
import pandas as pd import numpy as np from sklearn import datasets,discriminant_analysis from sklearn.model_selection import train_test_split iris=datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target,train_size=0.8,stratify=iris.target) y_c = np.unique(iris.target) lda=pd.read_csv('pendigits.csv') lda=discriminant_analysis.LinearDiscriminantAnalysis() lda.fit(x_train,y_train) print('Coefficients:%s, intercept %s'%(lda.coef_,lda.intercept_))#输出权重向量和 b print('Score: %.2f' % lda.score(x_test, y_test))#测试集
null是一个表示空值或缺失值的特殊值,通常用于表示变量或对象没有被赋值或不存在。在编程中,null通常用于判断变量是否有值,或者作为函数的返回值来表示没有返回值。在JavaScript中,null是一个原始值,表示空对象指针。
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 1、获取鸢尾花数据集 iris = load_iris() # 对鸢尾花数据集进行分割 # 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22) print("x_train:\n", x_train.shape) # 随机数种子 x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6) x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6) print("如果随机数种子不一致:\n", x_train == x_train1) print("如果随机数种子一致:\n", x_train1 == x_train2)请根据上述代码写一份详细解析
这段代码主要是利用sklearn库中的load_iris函数来获取鸢尾花数据集,然后使用train_test_split函数将数据集分为训练集和测试集,其中训练集包含特征值x_train和目标值y_train,测试集包含特征值x_test和目标值y_test。
具体解析如下:
1. 导入所需库
```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
```
2. 获取鸢尾花数据集
```
iris = load_iris()
```
这里使用load_iris()函数获取鸢尾花数据集,iris包含了数据集的各项信息,包括特征值(iris.data)和目标值(iris.target)。
3. 分割数据集
```
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
```
train_test_split函数将数据集分为训练集和测试集,其中iris.data表示特征值,iris.target表示目标值。random_state参数用于控制随机数生成器的种子,使得每次生成的随机数相同,以保证可重复性。
4. 打印训练集的特征值形状
```
print("x_train:\n", x_train.shape)
```
这里打印训练集的特征值形状,即样本数量和特征数量。
5. 测试随机数种子对数据集分割的影响
```
x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
print("如果随机数种子不一致:\n", x_train == x_train1)
print("如果随机数种子一致:\n", x_train1 == x_train2)
```
这里针对随机数种子的不同,将数据集分为两组训练集和测试集,然后分别比较它们之间的差异。如果随机数种子不一致,则分割的结果也不一致;如果随机数种子一致,则分割的结果一致。
总的来说,这段代码主要是介绍了如何使用sklearn库中的train_test_split函数来将数据集分为训练集和测试集,并且演示了随机数种子对分割结果的影响。
阅读全文