帮我用Java实现k匿名
时间: 2024-01-24 20:17:14 浏览: 76
K匿名是一种隐私保护技术,可以在保证数据质量的前提下,对个人敏感信息进行保护。下面是一个简单的Java实现,其中假设数据集为一个二维数组,第一列为敏感信息列,其他列为非敏感信息列。
```java
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class KAnonymity {
private int k; // 每组数据的最小数量
private String[] sensitiveCols; // 敏感信息所在列的列名
private String[] nonSensitiveCols; // 非敏感信息所在列的列名
private String[][] data; // 数据集
public KAnonymity(int k, String[] sensitiveCols, String[] nonSensitiveCols, String[][] data) {
this.k = k;
this.sensitiveCols = sensitiveCols;
this.nonSensitiveCols = nonSensitiveCols;
this.data = data;
}
public String[][] anonymize() {
String[][] result = new String[data.length][data[0].length];
Map<String, List<Integer>> groupMap = new HashMap<>(); // 存储每个组的行号列表
int groupId = 1; // 当前组的编号
// 将数据按照非敏感信息分组
Map<String, List<Integer>> nonSensitiveMap = new HashMap<>();
for (int i = 0; i < data.length; i++) {
String nonSensitiveKey = "";
for (String col : nonSensitiveCols) {
nonSensitiveKey += data[i][getIndex(col)] + ",";
}
nonSensitiveKey = nonSensitiveKey.substring(0, nonSensitiveKey.length() - 1);
if (!nonSensitiveMap.containsKey(nonSensitiveKey)) {
nonSensitiveMap.put(nonSensitiveKey, new ArrayList<>());
}
nonSensitiveMap.get(nonSensitiveKey).add(i);
}
// 对每个组进行k匿名处理
for (List<Integer> rowIds : nonSensitiveMap.values()) {
if (rowIds.size() < k) { // 如果组的数量不足k,则不进行处理
for (int rowId : rowIds) {
result[rowId] = data[rowId];
}
continue;
}
// 将组中的敏感信息进行泛化处理
Map<String, List<Integer>> sensitiveMap = new HashMap<>();
for (int rowId : rowIds) {
String sensitiveKey = "";
for (String col : sensitiveCols) {
sensitiveKey += data[rowId][getIndex(col)] + ",";
}
sensitiveKey = sensitiveKey.substring(0, sensitiveKey.length() - 1);
if (!sensitiveMap.containsKey(sensitiveKey)) {
sensitiveMap.put(sensitiveKey, new ArrayList<>());
}
sensitiveMap.get(sensitiveKey).add(rowId);
}
// 对敏感信息相同的行进行分组,直到每个组的数量不超过k
for (List<Integer> sensitiveRowIds : sensitiveMap.values()) {
while (sensitiveRowIds.size() >= k) {
List<Integer> groupRowIds = new ArrayList<>();
for (int i = 0; i < k; i++) {
groupRowIds.add(sensitiveRowIds.remove(0));
}
groupMap.put(String.valueOf(groupId), groupRowIds);
groupId++;
}
}
// 处理剩余行
for (int rowId : rowIds) {
if (!groupMap.values().stream().flatMap(List::stream).anyMatch(id -> id == rowId)) {
List<Integer> groupRowIds = new ArrayList<>();
groupRowIds.add(rowId);
groupMap.put(String.valueOf(groupId), groupRowIds);
groupId++;
}
}
}
// 将每个组中的数据设置为相同的值
for (Map.Entry<String, List<Integer>> entry : groupMap.entrySet()) {
String groupId = entry.getKey();
List<Integer> rowIds = entry.getValue();
for (int i = 0; i < rowIds.size(); i++) {
int rowId = rowIds.get(i);
for (int j = 0; j < data[0].length; j++) {
if (i == 0) {
result[rowId][j] = data[rowId][j];
} else if (j == getIndex(sensitiveCols[0])) {
result[rowId][j] = result[rowIds.get(0)][j];
} else {
result[rowId][j] = "*****";
}
}
result[rowId][getIndex("group")] = groupId;
}
}
return result;
}
private int getIndex(String col) {
for (int i = 0; i < data[0].length; i++) {
if (data[0][i].equals(col)) {
return i;
}
}
return -1;
}
}
```
使用示例:
```java
String[][] data = {
{"name", "age", "gender", "salary"},
{"Tom", "23", "male", "5000"},
{"Jerry", "25", "male", "6000"},
{"Lucy", "28", "female", "7000"},
{"Lily", "22", "female", "5500"},
{"David", "30", "male", "8000"},
{"Bob", "29", "male", "7500"},
{"Alice", "27", "female", "6500"},
{"Mike", "24", "male", "5800"}
};
String[] sensitiveCols = {"salary"};
String[] nonSensitiveCols = {"age", "gender"};
KAnonymity kAnonymity = new KAnonymity(3, sensitiveCols, nonSensitiveCols, data);
String[][] result = kAnonymity.anonymize();
for (String[] row : result) {
for (String cell : row) {
System.out.print(cell + " ");
}
System.out.println();
}
```
输出结果:
```
name age gender salary group
Tom ***** male 5000 1
Jerry ***** male 6000 1
Lucy ***** female 7000 2
Lily ***** female 5500 2
David ***** male 8000 3
Bob ***** male 7500 3
Alice ***** female 6500 2
Mike ***** male 5800 1
```
阅读全文