opencv裁剪百分之十的图像python
时间: 2023-09-10 16:11:13 浏览: 84
使用OpenCV的Python库可以轻松地裁剪图像的一部分。以下是裁剪图像10%的Python代码示例:
```python
import cv2
# 加载图像
img = cv2.imread('image.jpg')
# 获取图像的高度和宽度
height, width = img.shape[:2]
# 计算需要裁剪的高度和宽度
crop_height = int(height * 0.1)
crop_width = int(width * 0.1)
# 裁剪图像
cropped_img = img[crop_height:height-crop_height, crop_width:width-crop_width]
# 显示原始图像和裁剪后的图像
cv2.imshow("Original Image", img)
cv2.imshow("Cropped Image", cropped_img)
# 等待按下任意按键
cv2.waitKey(0)
# 关闭所有窗口
cv2.destroyAllWindows()
```
在这个示例中,我们首先加载了图像。然后,我们计算需要裁剪的高度和宽度并应用裁剪。最后,我们将原始图像和裁剪后的图像显示在屏幕上。
相关问题
opencv裁剪指定坐标图像 python
在Python中使用OpenCV进行图像裁剪时,可以使用`cv2`库中的`crop()`函数。这个函数的基本语法是:
```python
import cv2
def crop_image(image_path, x, y, width, height):
# 读取图片
img = cv2.imread(image_path)
# 指定裁剪区域,左上角(x, y),宽度和高度
cropped_img = img[y:y+height, x:x+width]
# 可选地,你可以保存裁剪后的图像
cv2.imwrite('cropped_image.jpg', cropped_img)
return cropped_img
# 使用示例
x, y, width, height = 50, 75, 300, 400 # 裁剪位置和尺寸
cropped_img = crop_image('original_image.jpg', x, y, width, height)
```
这里,`x`, `y`是原图中的左上角坐标,`width`和`height`则是裁剪区域的大小。返回的是裁剪后的新图像。
opencv裁剪图像 python
在Python中使用OpenCV(Open Source Computer Vision Library)裁剪图像通常涉及以下几个步骤:
1. **导入所需库**:
首先需要导入`cv2`模块,它是OpenCV的Python接口。
```python
import cv2
```
2. **读取图像**:
使用`cv2.imread()`函数加载图片,它会返回一个BGR色彩空间的numpy数组。
```python
image = cv2.imread('image_path.jpg')
```
3. **设置裁剪区域**:
定义一个矩形区域,由左上角(x, y)坐标和宽度(width), 高度(height)组成。例如,如果要裁剪图像的右下角100x100像素区域,可以这样做:
```python
top_left = (image.shape[1] - 100, image.shape[0] - 100)
bottom_right = (top_left[0] + 100, top_left[1] + 100) # 右下角坐标
cropping_region = (top_left, bottom_right)
```
4. **裁剪图像**:
使用`cv2.crop()`函数实际进行裁剪,它接受原图和裁剪区域作为参数,并返回一个新的图像。
```python
cropped_image = cv2.crop(image, cropping_region[0], cropping_region[1])
```
5. **保存裁剪后的图像**:
裁剪完成后,可以用`cv2.imwrite()`将结果保存到文件。
```python
cv2.imwrite('cropped_image_path.jpg', cropped_image)
```
阅读全文
相关推荐
















