解释color=color_detect(img2,i[0],i[1],i[2]) cv2.circle(img, (i[0], i[1]), 2, (255,0,0), 2) #标记中心 if color[0] >127: #黑子白心黑框 白子黑心白框 有个对比度 cv2.circle(img, (i[0], i[1]), i[2], (255,255,255), 2) #画圆 cv2.circle(img, (i[0], i[1]), 2, (0,0,0), 2) #标记中心 white+=1#白色棋子数量加一 point=((int((i[0]-50)/48+0.5)+1,int((i[1]-50)/51.4+0.53)+1,0))#该点棋子的信息 坐标以及颜色 else : cv2.circle(img, (i[0], i[1]), i[2], (0,0,0), 2) #画圆 cv2.circle(img, (i[0], i[1]), 2, (255,350,255), 2) #标记中心 black+=1#黑色棋子数量加一 point=((int((i[0]-50)/48+0.5)+1,int((i[1]-50)/51.4+0.53)+1,1))#该点棋子的信息 坐标以及颜色 if point not in points: points.append(point)
时间: 2023-05-23 14:03:13 浏览: 130
这段代码实现了以下功能:
1. 对于图像img2的像素点(i[0],i[1]),进行颜色检测,即判断该像素点的颜色是什么。
2. 根据检测结果,将该像素点标记为相应颜色,其中(255,0,0)表示蓝色颜色。
具体操作是:使用cv2.circle函数,在图片img上画一个半径为2像素且中心坐标为(i[0],i[1])的圆圈,颜色为蓝色,线条宽度为2像素。
相关问题
修改此代码使其可重复运行import pygame import sys from pygame.locals import * from robomaster import * import cv2 import numpy as np focal_length = 750 # 焦距 known_radius = 2 # 已知球的半径 def calculate_distance(focal_length, known_radius, perceived_radius): distance = (known_radius * focal_length) / perceived_radius return distance def show_video(ep_robot, screen): 获取机器人第一视角图像帧 img = ep_robot.camera.read_cv2_image(strategy="newest") 转换图像格式,转换为pygame的surface对象 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.transpose(img) # 行列互换 img = pygame.surfarray.make_surface(img) screen.blit(img, (0, 0)) # 绘制图像 def detect_white_circle(ep_robot): 获取机器人第一视角图像帧 img = ep_robot.camera.read_cv2_image(strategy="newest") 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 进行中值滤波处理 gray = cv2.medianBlur(gray, 5) 检测圆形轮廓 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 50, param1=160, param2=40, minRadius=5, maxRadius=60) if circles is not None: circles = np.uint16(np.around(circles)) for circle in circles[0, :]: center = (circle[0], circle[1]) known_radius = circle 在图像上绘制圆形轮廓 cv2.circle(img, center, known_radius, (0, 255, 0), 2) 显示图像 distance = calculate_distance(focal_length, known_radius, known_radius) 在图像上绘制圆和距离 cv2.circle(img, center, known_radius, (0, 255, 0), 2) cv2.putText(img, f"Distance: {distance:.2f} cm", (center[0] - known_radius, center[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow("White Circle Detection", img) cv2.waitKey(1) def main(): pygame.init() screen_size = width, height = 1280, 720 screen = pygame.display.set_mode(screen_size) ep_robot = robot.Robot() ep_robot.initialize(conn_type='ap') version = ep_robot.get_version() print("Robot version: {0}".format(version)) ep_robot.camera.start_video_stream(display=False) pygame.time.wait(100) clock = pygame.time.Clock() while True: clock.tick(5) # 将帧数设置为25帧 for event in pygame.event.get(): if event.type == QUIT: ep_robot.close() pygame.quit() sys.exit() show_video(ep_robot, screen) detect_white_circle(ep_robot) if name == 'main': main()
修改后的代码如下所示:
```python
import pygame
import sys
from pygame.locals import *
import robomaster
import cv2
import numpy as np
focal_length = 750 # 焦距
known_radius = 2 # 已知球的半径
def calculate_distance(focal_length, known_radius, perceived_radius):
distance = (known_radius * focal_length) / perceived_radius
return distance
def show_video(ep_robot, screen):
# 获取机器人第一视角图像帧
img = ep_robot.camera.read_cv2_image(strategy="newest")
# 转换图像格式,转换为pygame的surface对象
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.transpose(img) # 行列互换
img = pygame.surfarray.make_surface(img)
screen.blit(img, (0, 0)) # 绘制图像
def detect_white_circle(ep_robot):
# 获取机器人第一视角图像帧
img = ep_robot.camera.read_cv2_image(strategy="newest")
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 进行中值滤波处理
gray = cv2.medianBlur(gray, 5)
# 检测圆形轮廓
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 50, param1=160, param2=40, minRadius=5, maxRadius=60)
if circles is not None:
circles = np.uint16(np.around(circles
回答一下代码:import numpy as np import cv2 import Products as product # 加载视频 cap = cv2.VideoCapture("../sample/1.mp4") # 变量 font = cv2.FONT_HERSHEY_SIMPLEX products = [] pid = 1 areaTh = 18000 # 获取图像width, height width = cap.get(3) height = cap.get(3) while cap.isOpened(): ret, frame = cap.read() try: # 复制图片,用于绘制 img = frame.copy() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1] except: print("EOF") break # 边缘检测,识别工件 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) if area > areaTh: M = cv2.moments(cnt) cx = int(M['m10'] / M['m00']) cy = int(M['m01'] / M['m00']) x, y, w, h = cv2.boundingRect(cnt) new = True if cx > 100: for i in products: if abs(cx - i.getX()) <= 25 and abs(cy - i.getY()) <= 25: new = False i.updateCoords(cx, cy, x, y, w, h) if new: p = product.Product(pid, cx, cy, x, y, w, h) p.save_pic(frame) products.append(p) product.count = pid defects = p.defect_detect() pid += 1 cv2.circle(img, (cx, cy), 5, (0, 0, 255), -1) img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) for i in products: # 标记ID if i.getX() <= 600: cv2.putText(img, str(i.getId()), (i.getX(), i.getY()), font, 1.0, i.getRGB(), 1, cv2.LINE_AA) # 绘制缺陷 for j in i.defects: if j.getState() == 1: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (0, 255, 255), 1) elif j.getState() == 2: img = cv2.rectangle(img, (i.getBoundX() + j.getX(), i.getBoundY() + j.getY()), (i.getBoundX() + j.getX() + j.getW() + 5, i.getBoundY() + j.getY() + j.getH() + 5), (255, 255, 0), 1) # 绘制sum cv2.putText(img, "sum:" + str(product.count), (10, 30), font, 0.7, (255, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "scratch_sum:" + str(product.Product.scratch_sum), (10, 50), font, 0.7, (0, 255, 255), 1, cv2.LINE_AA) cv2.putText(img, "blot_sum:" + str(product.Product.blot_sum), (10, 70), font, 0.7, (255, 255, 0), 1, cv2.LINE_AA) cv2.imshow("test", img) k = cv2.waitKey(10) & 0xff if k == 27: break cv2.destroyAllWindows()
这段代码导入了三个Python模块:numpy、cv2和Products。下面是每个模块的简要说明:
1. numpy:是一个Python库,用于在Python中进行数值计算。它支持大量的数学操作和运算,如矩阵操作、线性代数、随机数生成等等。
2. cv2:是一个Python库,用于计算机视觉和图像处理。它是OpenCV(开源计算机视觉库)的Python接口,提供了许多处理图像的函数和方法。
3. Products:这是一个自定义的Python模块,它很可能包含了一些与产品相关的代码。由于我们没有看到这个模块的代码,所以不能对它做出具体的解释。
需要注意的是,这段代码中导入的模块需要在系统中预先安装好,否则会导致 ImportError 错误。如果你在运行时遇到了这个错误,你需要在终端或命令行界面中使用 pip 命令安装相应的模块。例如,要安装 numpy 模块,可以在命令行中输入:
```python
pip install numpy
```
同样的方式也适用于其他模块。
阅读全文