求测试信号多尺度排列熵的python代码
时间: 2024-05-07 20:22:58 浏览: 49
求解多尺度熵可以用
以下是一个简单的 Python 代码示例,用于计算测试信号的多尺度排列熵(MPE):
```python
import numpy as np
from scipy.spatial.distance import pdist, squareform
def permutation_entropy(time_series, m, delay):
n = time_series.shape[0]
permutations = np.array(list(itertools.permutations(range(m))))
num_permutations = permutations.shape[0]
ordinal = np.zeros((n - (m - 1) * delay, num_permutations))
for i in range(num_permutations):
idx = np.array([range(j * delay, j * delay + m) for j in range(n - (m - 1) * delay)])
ordinal[:, i] = np.argsort([time_series[k] for k in idx[:, permutations[i]]])
return -np.mean(np.sum(np.log(ordinal / (n - m + 1)), axis=1))
def multiscale_permutation_entropy(time_series, m, delay, scales):
mpes = []
for scale in scales:
downsampled = time_series[::scale]
mpe = permutation_entropy(downsampled, m, delay)
mpes.append(mpe)
return mpes
# 生成测试信号
n = 1000
t = np.linspace(0, 20*np.pi, n)
x = np.sin(t) + 0.5 * np.sin(3*t) + 0.1 * np.sin(5*t)
# 计算多尺度排列熵
m = 3
delay = 1
scales = [2, 4, 8, 16, 32]
mpes = multiscale_permutation_entropy(x, m, delay, scales)
# 输出结果
print(mpes)
```
在这个代码中,`permutation_entropy()` 函数计算给定时间序列的排列熵,`multiscale_permutation_entropy()` 函数计算给定时间序列在多个尺度下的排列熵。最后,我们使用一个简单的测试信号来演示如何使用这些函数,并计算多尺度排列熵。
阅读全文