求测试信号多尺度排列熵python代码
时间: 2024-01-16 12:49:32 浏览: 108
以下是一个计算测试信号多尺度排列熵的 Python 代码示例:
```python
import numpy as np
from itertools import permutations
def permutation_entropy(signal, m, delay, scale):
"""Calculate permutation entropy for a given signal and parameters"""
# create permutation vectors
perms = np.array(list(permutations(range(m))))
n_perms = len(perms)
# create multi-scale signal
ms_signal = np.zeros((scale, len(signal) - (m-1)*delay))
for i in range(scale):
ms_signal[i] = signal[i*delay:i*delay+len(ms_signal[i])]
# calculate permutation entropy for each scale
pe = np.zeros(scale)
for i in range(scale):
# create delay vectors
delay_vectors = np.zeros((n_perms, len(ms_signal[i])-m+1))
for j in range(n_perms):
for k in range(m):
delay_vectors[j] += ms_signal[i][perms[j,k]:perms[j,k]+len(delay_vectors[j]))
# calculate frequencies of each permutation
freqs = np.zeros(n_perms)
for j in range(n_perms):
freqs[j] = np.sum(np.all(delay_vectors[j]==delay_vectors, axis=1))
# calculate probabilities and permutation entropy
probs = freqs / np.sum(freqs)
pe[i] = -np.sum(probs * np.log2(probs))
return pe
```
此函数接受四个参数:原始信号 `signal`、时间延迟 `delay`、排列的长度 `m`、以及要计算的尺度数 `scale`。
例如,如果要计算一个长度为 100 的测试信号的双尺度排列熵,可以这样调用函数:
```python
signal = np.random.rand(100)
pe = permutation_entropy(signal, m=3, delay=1, scale=2)
print(pe) # 输出双尺度排列熵的结果
```
该函数将返回一个长度为 `scale` 的数组,包含每个尺度上的排列熵结果。
阅读全文