yolov5目标识别的pyqt界面代码
时间: 2023-10-27 16:08:14 浏览: 152
人工智能+目标识别+swinTransformer+pyqt5+界面
5星 · 资源好评率100%
由于YOLOv5目标识别的PyQt界面代码可能会有很多不同的实现方式和结构,因此无法提供通用的代码。以下是一个参考示例:
``` python
import sys
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import Qt, QThread, pyqtSignal
from PyQt5.QtGui import QPixmap
from main import detect
class DetectionThread(QThread):
detectionResult = pyqtSignal(list)
def __init__(self, image_path):
super().__init__()
self.image_path = image_path
def run(self):
results = detect(self.image_path)
self.detectionResult.emit(results)
class MainWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self.image_path = None
self.initUI()
def initUI(self):
self.setWindowTitle("YOLOv5 Object Detection")
self.setGeometry(100, 100, 800, 600)
# create menu bar
menubar = self.menuBar()
fileMenu = menubar.addMenu('&File')
openAction = QtWidgets.QAction('&Open', self)
openAction.setShortcut('Ctrl+O')
openAction.triggered.connect(self.openImage)
fileMenu.addAction(openAction)
# create central widget
self.centralWidget = QtWidgets.QWidget(self)
self.setCentralWidget(self.centralWidget)
# create image label
self.imageLabel = QtWidgets.QLabel(self)
self.imageLabel.setAlignment(Qt.AlignCenter)
self.imageLabel.setPixmap(QPixmap("placeholder.png"))
self.imageLabel.setScaledContents(True)
# create detection result table
self.resultTable = QtWidgets.QTableWidget(self)
self.resultTable.setColumnCount(6)
self.resultTable.setHorizontalHeaderLabels(["Class", "Confidence", "X", "Y", "Width", "Height"])
# create detection button
self.detectButton = QtWidgets.QPushButton("Detect", self)
self.detectButton.clicked.connect(self.detect)
# create layout
vbox = QtWidgets.QVBoxLayout(self.centralWidget)
vbox.addWidget(self.imageLabel)
vbox.addWidget(self.resultTable)
vbox.addWidget(self.detectButton)
def openImage(self):
self.image_path, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Open Image", "", "Images (*.png *.xpm *.jpg)")
if self.image_path:
self.imageLabel.setPixmap(QPixmap(self.image_path))
def detect(self):
if self.image_path:
self.resultTable.setRowCount(0)
self.detectButton.setEnabled(False)
self.thread = DetectionThread(self.image_path)
self.thread.detectionResult.connect(self.updateResultTable)
self.thread.finished.connect(self.enableDetectButton)
self.thread.start()
def updateResultTable(self, results):
for result in results:
rowPosition = self.resultTable.rowCount()
self.resultTable.insertRow(rowPosition)
self.resultTable.setItem(rowPosition, 0, QtWidgets.QTableWidgetItem(result["class"]))
self.resultTable.setItem(rowPosition, 1, QtWidgets.QTableWidgetItem(str(result["confidence"])))
self.resultTable.setItem(rowPosition, 2, QtWidgets.QTableWidgetItem(str(result["x"])))
self.resultTable.setItem(rowPosition, 3, QtWidgets.QTableWidgetItem(str(result["y"])))
self.resultTable.setItem(rowPosition, 4, QtWidgets.QTableWidgetItem(str(result["width"])))
self.resultTable.setItem(rowPosition, 5, QtWidgets.QTableWidgetItem(str(result["height"])))
def enableDetectButton(self):
self.detectButton.setEnabled(True)
if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
mainWindow = MainWindow()
mainWindow.show()
sys.exit(app.exec_())
```
这个示例代码创建了一个基本的PyQt窗口,包括一个菜单栏、一个标签显示图片、一个按钮触发目标检测、一个表格显示检测结果。同时,它使用了一个后台线程来运行目标检测,以免阻塞主线程。具体实现细节可以参考代码中的注释。
阅读全文