决策树实现手写体识别的代码
时间: 2023-12-04 13:04:43 浏览: 67
以下是一个基于Python的决策树实现手写体识别的代码示例:
```python
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载手写体数据集
digits = load_digits()
X, y = digits.data, digits.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 构建决策树分类器
clf = DecisionTreeClassifier(criterion='entropy', max_depth=5)
# 训练决策树分类器
clf.fit(X_train, y_train)
# 预测测试集结果
y_pred = clf.predict(X_test)
# 计算测试集准确率
accuracy = accuracy_score(y_test, y_pred)
# 输出准确率
print("Accuracy:", accuracy)
```
代码中使用了Python的sklearn库来实现决策树分类器。首先加载手写体数据集,然后划分训练集和测试集。接着通过构建决策树分类器并训练,预测测试集结果并计算准确率。
阅读全文