使用决策树实现手写体识别python实现,并且包括算法实现

时间: 2024-01-28 07:03:03 浏览: 131
以下是使用决策树算法实现手写体识别的Python代码,包括算法实现: ```python import numpy as np from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split class Node: def __init__(self, feature=None, threshold=None, left=None, right=None, value=None): self.feature = feature self.threshold = threshold self.left = left self.right = right self.value = value class DecisionTree: def __init__(self, max_depth=None, min_samples_split=2): self.root = None self.max_depth = max_depth self.min_samples_split = min_samples_split def fit(self, X, y): self.root = self._build_tree(X, y) def predict(self, X): return np.array([self._predict(x, self.root) for x in X]) def _build_tree(self, X, y, depth=0): n_samples, n_features = X.shape n_labels = len(np.unique(y)) # 终止条件 if depth == self.max_depth or n_labels == 1 or n_samples < self.min_samples_split: return Node(value=self._most_common_label(y)) # 选择最优特征和阈值 best_feature, best_threshold = self._best_criteria(X, y) # 分割数据集 left_idx = X[:, best_feature] < best_threshold left_X, left_y = X[left_idx], y[left_idx] right_X, right_y = X[~left_idx], y[~left_idx] # 递归构建左右子树 left = self._build_tree(left_X, left_y, depth+1) right = self._build_tree(right_X, right_y, depth+1) return Node(best_feature, best_threshold, left, right) def _best_criteria(self, X, y): best_gain = -1 split_idx, split_threshold = None, None for feature_idx in range(X.shape[1]): thresholds = np.unique(X[:, feature_idx]) for threshold in thresholds: gain = self._information_gain(y, X[:, feature_idx], threshold) if gain > best_gain: best_gain = gain split_idx = feature_idx split_threshold = threshold return split_idx, split_threshold def _information_gain(self, y, X_feature, threshold): # 计算父节点的熵 parent_entropy = self._entropy(y) # 根据阈值分割数据集 left_idx = X_feature < threshold left_y, right_y = y[left_idx], y[~left_idx] # 计算子节点的熵和权重 n = len(y) left_weight, right_weight = len(left_y) / n, len(right_y) / n child_entropy = left_weight * self._entropy(left_y) + right_weight * self._entropy(right_y) # 计算信息增益 ig = parent_entropy - child_entropy return ig def _entropy(self, y): hist = np.bincount(y) ps = hist / np.sum(hist) return -np.sum([p * np.log2(p) for p in ps if p > 0]) def _most_common_label(self, y): hist = np.bincount(y) return np.argmax(hist) def _predict(self, x, node): if node.value is not None: return node.value if x[node.feature] < node.threshold: return self._predict(x, node.left) else: return self._predict(x, node.right) # 加载手写数字数据集 digits = load_digits() # 获取特征和标签 X = digits.data y = digits.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建决策树模型 clf = DecisionTree(max_depth=10) # 训练模型 clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 计算准确率 accuracy = np.mean(y_pred == y_test) # 输出准确率 print("Accuracy:", accuracy) ``` 在上面的代码中,我们定义了一个`Node`类和一个`DecisionTree`类,分别表示决策树的节点和决策树本身。在`DecisionTree`类中,我们实现了`fit`方法和`predict`方法,分别用于训练模型和进行预测。在训练过程中,我们使用`_build_tree`方法递归地构建决策树,使用`_best_criteria`方法选择最优特征和阈值,使用`_information_gain`方法计算信息增益,使用`_entropy`方法计算熵,使用`_most_common_label`方法选择出现次数最多的标签。在预测过程中,我们使用`_predict`方法递归地遍历决策树,并返回最终的预测结果。 需要注意的是,由于决策树算法容易出现过拟合问题,因此我们通常需要设置一些参数来控制决策树的复杂度,比如最大深度、叶节点最小样本数等。在上面的代码中,我们设置了最大深度为10。
阅读全文

相关推荐

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即...
recommend-type

基于ID3决策树算法的实现(Python版)

ID3(Iterative Dichotomiser 3)决策树算法是一种经典的分类算法,主要用于处理离散型特征的数据集。在Python中实现ID3算法时,通常会涉及以下几个关键步骤: 1. **计算熵(Entropy)**: 熵是衡量数据集纯度的一...
recommend-type

手写数字识别(python底层实现)报告.docx

【描述】:本报告主要探讨了如何使用Python从零开始实现手写数字识别,具体包括理解MNIST数据集,构建多层感知机(MLP)网络,优化参数以提高识别准确性,以及通过注释提升代码可读性。 【标签】:Python,手写数字...
recommend-type

基于MapReduce实现决策树算法

9. 基于MapReduce实现决策树算法的缺点:基于MapReduce实现决策树算法的缺点包括对输入数据的限制、对决策树算法的计算速度和效率的限制等。 10. 基于MapReduce实现决策树算法的应用前景:基于MapReduce实现决策树...
recommend-type

python使用sklearn实现决策树的方法示例

在Python的机器学习领域,`sklearn`库是不可或缺的一部分,它提供了丰富的算法,包括决策树。本示例将详细讲解如何使用`sklearn`库中的`DecisionTreeClassifier`类来构建决策树模型。 首先,确保你有一个合适的开发...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时