代码设计,hadoop的单词计数功能
时间: 2023-08-10 14:21:38 浏览: 89
一个简单的 Hadoop MapReduce 程序示例.rar
Hadoop的单词计数功能可以通过MapReduce编程模型来实现。具体步骤如下:
1. Mapper阶段:将输入文件划分成若干个小块,每个小块由一个Mapper进行处理。Mapper首先将输入的文本进行切分,将每个单词作为一个key,将其出现的次数作为value进行输出。
2. Shuffle阶段:将Mapper阶段输出的键值对按照key进行分组,将相同key的value合并在一起,得到一个key-value列表。
3. Reducer阶段:将Shuffle阶段输出的key-value列表按照key进行分组,然后对每个key的value进行汇总,得到最终的统计结果。
下面是一个简单的Hadoop单词计数的MapReduce程序实现:
Mapper代码:
```
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
```
Reducer代码:
```
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
在main函数中进行Job的配置和提交:
```
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
```
以上代码实现了一个简单的Hadoop单词计数程序。
阅读全文