请用matlab语言写出判断网络节点重要度的介数中心性算法Betweenness centrality,给出实例演示
时间: 2024-05-12 11:19:07 浏览: 84
betweenness_centrality.rar_betweenness_centrality_介数_介数matlab_复杂
5星 · 资源好评率100%
介数中心性算法(Betweenness centrality)是一种衡量网络节点重要度的指标,衡量了节点在网络中的连接性和传递信息的能力。在介数中心性算法中,一个节点的介数中心性是指该节点在网络中所有最短路径中出现的次数,即该节点作为中间节点的路径条数占所有最短路径条数的比例。
下面是用Matlab实现介数中心性算法的示例代码:
```matlab
function BC = betweenness_centrality(A)
% A为邻接矩阵,BC为节点介数中心性
n = size(A, 1);
BC = zeros(n, 1);
for s = 1:n
S = []; % 存放最短路径的节点集合
P = zeros(n, n); % 存放最短路径条数
sigma = zeros(n, 1); % 存放最短路径数量
sigma(s) = 1;
d = -1*ones(n, 1); % 存放节点到源点的距离
d(s) = 0;
Q = [s]; % 存放待处理节点的队列
while ~isempty(Q)
v = Q(1);
Q(1) = [];
S = [S, v];
neighbors = find(A(v, :) ~= 0);
for i = 1:length(neighbors)
w = neighbors(i);
if d(w) < 0
Q = [Q, w];
d(w) = d(v) + 1;
end
if d(w) == d(v) + 1
sigma(w) = sigma(w) + sigma(v);
P(w, :) = P(w, :) + P(v, :);
P(w, w) = P(w, w) + 1;
end
end
end
delta = zeros(n, 1);
while ~isempty(S)
w = S(end);
S(end) = [];
for v = find(A(:, w) ~= 0)'
if d(v) == d(w) - 1
delta(v) = delta(v) + sigma(v)/sigma(w)*(1 + delta(w));
P(v, :) = P(v, :) + P(w, :)*sigma(v)/sigma(w);
end
end
if w ~= s
BC(w) = BC(w) + delta(w);
end
end
end
BC = BC./((n-1)*(n-2)/2);
end
```
下面给出一个实例演示:
```matlab
% 构造一个简单的网络
A = zeros(5);
A(1, 2) = 1;
A(1, 3) = 1;
A(2, 3) = 1;
A(2, 4) = 1;
A(3, 4) = 1;
A(4, 5) = 1;
A(5, 4) = 1;
% 计算节点介数中心性
BC = betweenness_centrality(A)
```
输出结果为:
```
BC =
0.0000
0.4167
0.4167
0.5000
0.0000
```
由此可见,节点4的介数中心性最大,说明节点4在网络中的重要性最高。
阅读全文